1887

Abstract

To better understand the biology and the virulence determinants of the two major mycobacterial human pathogens and , their genome sequences have been determined recently. comparisons revealed that among the 1439 genes common to both and , 219 genes code for proteins that show no similarity with proteins from other organisms. Therefore, the latter ‘core’ genes could be specific for mycobacteria or even for the intracellular mycobacterial pathogens. To obtain more information as to whether these genes really were mycobacteria-specific, they were included in a focused macro-array, which also contained genes from previously defined regions of difference (RD) known to be absent from BCG relative to . Hybridization of DNA from 40 strains of the complex and comparison of these genes with the near-complete genome sequences from , and were undertaken to answer this question. The results showed that among the 219 conserved genes, very few were not present in all the strains tested. Some of these missing genes code for proteins of the ESAT-6 family, a group of highly immunogenic small proteins whose presence and number is variable among the genomically highly conserved members of the complex. Indeed, the results suggest that, with few exceptions, the ‘core’ genes conserved among H37Rv and are also highly conserved among other mycobacterial strains, which makes them interesting potential targets for developing new specific anti-mycobacterial drugs. In contrast, the genes from RD regions showed great variability among certain members of the complex, and some new specific deletions in , and seal isolates were identified and further characterized during this study. Together with the distribution of a particular 6 or 7 bp micro-deletion in the gene encoding the polyketide synthase , these results confirm and further extend the revised phylogenetic model for the complex recently presented.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26662-0
2004-02-01
2020-01-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/2/mic1500483.html?itemId=/content/journal/micro/10.1099/mic.0.26662-0&mimeType=html&fmt=ahah

References

  1. Banu S., Honore N., Saint-Joanis B., Philpott D., Prevost M. C., Cole S. T. 2002; Are the PE-PGRS proteins of Mycobacterium tuberculosis variable surface antigens?. Mol Microbiol44:9–19[CrossRef]
    [Google Scholar]
  2. Behr M. A., Wilson M. A., Gill W. P., Salamon H., Schoolnik G. K., Rane S., Small P. M. 1999; Comparative genomics of BCG vaccines by whole-genome DNA microarray. Science284:1520–1523[CrossRef]
    [Google Scholar]
  3. Belanger A. E., Besra G. S., Ford M. E., Mikusova K., Belisle J. T., Brennan P. J., Inamine J. M. 1996; The embAB genes of Mycobacterium avium encode an arabinosyl transferase involved in cell wall arabinan biosynthesis that is the target for the antimycobacterial drug ethambutol. Proc Natl Acad Sci U S A93:11919–11924[CrossRef]
    [Google Scholar]
  4. Brodin P., Eiglmeier K., Marmiesse M., Billault A., Garnier T., Niemann S., Cole S. T., Brosch R. 2002; Bacterial artificial chromosome-based comparative genomic analysis identifies Mycobacterium microti as a natural ESAT-6 deletion mutant. Infect Immun70:5568–5578[CrossRef]
    [Google Scholar]
  5. Brosch R., Gordon S. V., Billault A., Garnier T., Eiglmeier K., Soravito C., Barrell B. G., Cole S. T. 1998; Use of a Mycobacterium tuberculosis H37Rv bacterial artificial chromosome library for genome mapping, sequencing, and comparative genomics. Infect Immun66:2221–2229
    [Google Scholar]
  6. Brosch R., Gordon S. V., Pym A., Eiglmeier K., Garnier T., Cole S. T. 2000; Comparative genomics of the mycobacteria. Int J Med Microbiol290:143–152[CrossRef]
    [Google Scholar]
  7. Brosch R., Pym A. S., Gordon S. V., Cole S. T. 2001; The evolution of mycobacterial pathogenicity: clues from comparative genomics. Trends Microbiol9:452–458[CrossRef]
    [Google Scholar]
  8. Brosch R., Gordon S. V., Marmiesse M.. 12 other authors 2002; A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc Natl Acad Sci U S A99:3684–3689[CrossRef]
    [Google Scholar]
  9. Camus J. C., Pryor M. J., Medigue C., Cole S. T. 2002; Re-annotation of the genome sequence of Mycobacterium tuberculosis H37Rv. Microbiology148:2967–2973
    [Google Scholar]
  10. Cole S. T. 2002; Comparative mycobacterial genomics as a tool for drug target and antigen discovery. Eur Respir J Suppl36:78–86
    [Google Scholar]
  11. Cole S. T., Brosch R., Parkhill J.. 39 other authors 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature393:537–544[CrossRef]
    [Google Scholar]
  12. Cole S. T., Eiglmeier K., Parkhill J.. 41 other authors 2001; Massive gene decay in the leprosy bacillus. Nature409:1007–1011[CrossRef]
    [Google Scholar]
  13. Constant P., Perez E., Malaga W., Laneelle M. A., Saurel O., Daffe M., Guilhot C. 2002; Role of the pks15/1 gene in the biosynthesis of phenolglycolipids in the Mycobacterium tuberculosis complex. Evidence that all strains synthesize glycosylated p -hydroxybenzoic methyl esters and that strains devoid of phenolglycolipids harbor a frameshift mutation in the pks15/1 gene. J Biol Chem277:38148–38158[CrossRef]
    [Google Scholar]
  14. Cousins D. V., Bastida R., Cataldi A.. 16 other authors 2003; Tuberculosis in seals caused by a novel member of the Mycobacterium tuberculosis complex: Mycobacterium pinnipedii sp. nov. Int J Syst Evol Microbiol53:1305–1314[CrossRef]
    [Google Scholar]
  15. Fleischmann R. D., Alland D., Eisen J. A.. 23 other authors 2002; Whole-genome comparison of Mycobacterium tuberculosis clinical and laboratory strains. J Bacteriol184:5479–5490[CrossRef]
    [Google Scholar]
  16. Fletcher H. A., Donoghue H. D., Taylor G. M., Spigelman M, van der Zanden A. G.. 2003; Molecular analysis of Mycobacterium tuberculosis DNA from a family of 18th century Hungarians. Microbiology149:143–151[CrossRef]
    [Google Scholar]
  17. Garnier T., Eiglmeier K., Camus J. C.. 19 other authors 2003; The complete genome sequence of Mycobacterium bovis . Proc Natl Acad Sci U S A100:7877–7882[CrossRef]
    [Google Scholar]
  18. Gey Van Pittius N. C., Gamieldien J., Hide W., Brown G. D., Siezen R. J., Beyers A. D. 2001; The ESAT-6 gene cluster of Mycobacterium tuberculosis and other high G+C Gram-positive bacteria. Genome Biol2: RESEARCH0044.1-0044.18
    [Google Scholar]
  19. Gordon S. V., Brosch R., Billault A., Garnier T., Eiglmeier K., Cole S. T. 1999; Identification of variable regions in the genomes of tubercle bacilli using bacterial artificial chromosome arrays. Mol Microbiol32:643–655[CrossRef]
    [Google Scholar]
  20. Gutacker M. M., Smoot J. C., Migliaccio C. A.. 7 other authors 2002; Genome-wide analysis of synonymous single nucleotide polymorphisms in Mycobacterium tuberculosis complex organisms. Resolution of genetic relationships among closely related microbial strains. Genetics162:1533–1543
    [Google Scholar]
  21. Ho T. B., Robertson B. D., Taylor G. M., Shaw R. J., Young D. B. 2000; Comparison of Mycobacterium tuberculosis genomes reveals frequent deletions in a 20 kb variable region in clinical isolates. Yeast17:272–282
    [Google Scholar]
  22. Kato-Maeda M., Rhee J. T., Gingeras T. R., Salamon H., Drenkow J., Smittipat N., Small P. M. 2001; Comparing genomes within the species Mycobacterium tuberculosis . Genome Res11:547–554[CrossRef]
    [Google Scholar]
  23. Lewis K. N., Liao R., Guinn K. M., Hickey M. J., Smith S., Behr M. A., Sherman D. R. 2003; Deletion of RD1 from Mycobacterium tuberculosis mimics bacille Calmette-Guerin attenuation. J Infect Dis187:117–123[CrossRef]
    [Google Scholar]
  24. Mahairas G. G., Sabo P. J., Hickey M. J., Singh D. C., Stover C. K. 1996; Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis . J Bacteriol178:1274–1282
    [Google Scholar]
  25. Mostowy S., Cousins D., Brinkman J., Aranaz A., Behr M. A. 2002; Genomic deletions suggest a phylogeny for the Mycobacterium tuberculosis complex. J Infect Dis186:74–80[CrossRef]
    [Google Scholar]
  26. Niobe-Eyangoh S. N., Kuaban C., Sorlin P., Cunin P., Thonnon J., Sola C., Rastogi N., Vincent V., Gutierrez M. C. 2003; Genetic biodiversity of Mycobacterium tuberculosis complex strains from patients with pulmonary tuberculosis in Cameroon. J Clin Microbiol41:2547–2553[CrossRef]
    [Google Scholar]
  27. Pallen M. J. 2002; The ESAT-6/WXG100 superfamily – and a new Gram-positive secretion system?. Trends Microbiol10:209–212[CrossRef]
    [Google Scholar]
  28. Pym A. S., Brodin P., Brosch R., Huerre M., Cole S. T. 2002; Loss of RD1 contributed to the attenuation of the live tuberculosis vaccines Mycobacterium bovis BCG and Mycobacterium microti . Mol Microbiol46:709–717[CrossRef]
    [Google Scholar]
  29. Pym A. S., Brodin P., Majlessi L.. 7 other authors 2003; Recombinant BCG exporting ESAT-6 confers enhanced protection against tuberculosis. Nat Med9:533–539[CrossRef]
    [Google Scholar]
  30. Rosenkrands I., King A., Weldingh K., Moniatte M., Moertz E., Andersen P. 2000; Towards the proteome of Mycobacterium tuberculosis . Electrophoresis21:3740–3756[CrossRef]
    [Google Scholar]
  31. Rutherford K., Parkhill J., Crook J., Horsnell T., Rice P., Rajandream M.-A., Barrell B. 2000; artemis: sequence visualisation and annotation. Bioinformatics16:944–945[CrossRef]
    [Google Scholar]
  32. Skjot R. L., Brock I., Arend S. M., Munk M. E., Theisen M., Ottenhoff T. H., Andersen P. 2002; Epitope mapping of the immunodominant antigen TB10.4 and the two homologous proteins TB10.3 and TB12.9, which constitute a subfamily of the esat-6 gene family. Infect Immun70:5446–5453[CrossRef]
    [Google Scholar]
  33. Soini H., Pan X., Amin A., Graviss E. A., Siddiqui A., Musser J. M. 2000; Characterization of Mycobacterium tuberculosis isolates from patients in Houston, Texas, by spoligotyping. J Clin Microbiol38:669–676
    [Google Scholar]
  34. Springer B., Stockman L., Teschner K., Roberts G. D., Bottger E. C. 1996; Two-laboratory collaborative study on identification of mycobacteria: molecular versus phenotypic methods. J Clin Microbiol34:296–303
    [Google Scholar]
  35. Sreevatsan S., Pan X., Stockbauer K. E., Connell N. D., Kreiswirth B. N., Whittam T. S., Musser J. M. 1997; Restricted structural gene polymorphism in the Mycobacterium tuberculosis complex indicates evolutionarily recent global dissemination. Proc Natl Acad Sci U S A94:9869–9874[CrossRef]
    [Google Scholar]
  36. Supply P., Warren R. M., Banuls A. L.. 7 other authors 2003; Linkage disequilibrium between minisatellite loci supports clonal evolution of Mycobacterium tuberculosis in a high tuberculosis incidence area. Mol Microbiol47:529–538[CrossRef]
    [Google Scholar]
  37. Tekaia F., Gordon S. V., Garnier T., Brosch R., Barrell B. G., Cole S. T. 1999; Analysis of the proteome of Mycobacterium tuberculosis in silico . Tuber Lung Dis79:329–342[CrossRef]
    [Google Scholar]
  38. Telenti A., Philipp W. J., Sreevatsan S., Bernasconi C., Stockbauer K. E., Wieles B., Musser J. M., Jacobs W. R. Jr. 1997; The emb operon, a gene cluster of Mycobacterium tuberculosis involved in resistance to ethambutol. Nat Med3:567–570[CrossRef]
    [Google Scholar]
  39. van Soolingen D., Hoogenboezem T., 9 other authors de Haas P. E.. 1997; A novel pathogenic taxon of the Mycobacterium tuberculosis complex, Canetti: characterization of an exceptional isolate from Africa. Int J Syst Bacteriol47:1236–1245[CrossRef]
    [Google Scholar]
  40. Zink A. R., Sola C., Reischl U., Grabner W., Rastogi N., Wolf H., Nerlich A. G. 2003; Characterization of Mycobacterium tuberculosis complex DNAs from Egyptian mummies by spoligotyping. J Clin Microbiol41:359–367[CrossRef]
    [Google Scholar]
  41. Zumarraga M. J., Bernardelli A., Bastida R.. 10 other authors 1999; Molecular characterization of mycobacteria isolated from seals. Microbiology145:2519–2526
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26662-0
Loading
/content/journal/micro/10.1099/mic.0.26662-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error