Complementation of a Δ mutant of with CcpA mutants affected in the DNA- and cofactor-binding domains Free

Abstract

In low-G+C Gram-positive bacteria, the regulatory protein CcpA has been shown to play a major part in the so-called carbon catabolite repression (CCR) process, as well as in the induction of basic metabolic genes, for which it is considered a global regulator. A strain of that carried a complete deletion of has been constructed and used to test the effect of CCR on -acetylglucosaminidase activity and growth performance of a collection of seven CcpA mutations obtained by site-directed mutagenesis. The replaced amino acids were located in the DNA- and cofactor (P-Ser-HPr)-binding domains. Mutations in the DNA-binding domain lacked CCR, as found in . However, mutations in the cofactor-binding domain of CcpA had a different phenotype to that observed in the previous studies with . Two of them, S80L and T307I, displayed a significant hyper-repression, an effect never reported before for CcpA. Comparison of growth capabilities provided by the different mutants and their ability to sustain CCR demonstrated that CCR, at least on the enzymic activity tested, and the growth defect caused by the CcpA mutations are unrelated features.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26658-0
2004-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/3/mic1500613.html?itemId=/content/journal/micro/10.1099/mic.0.26658-0&mimeType=html&fmt=ahah

References

  1. Aung-Hilbrich L. M., Seidel G., Wagner A., Hillen W. 2002; Quantification of the influence of HPrSer46P on CcpA-cre interaction. J Mol Biol 319:77–85 [CrossRef]
    [Google Scholar]
  2. Brückner R., Titgemeyer F. 2002; Carbon catabolite repression in bacteria: choice of the carbon source and autoregulatory limitation of sugar utilization. FEMS Microbiol Lett 209:141–148 [CrossRef]
    [Google Scholar]
  3. Davison S. P., Santangelo J. D., Reid S. J., Woods D. R. 1995; A Clostridium acetobutylicum regulator gene (regA) affecting amylase production in Bacillus subtilis. Microbiology 141:989–996 [CrossRef]
    [Google Scholar]
  4. Deutscher J., Küster E., Bergstedt U., Charrier V., Hillen W. 1995; Protein kinase-dependent HPr/CcpA interaction links glycolytic activity to carbon catabolite repression in gram-positive bacteria. Mol Microbiol 15:1049–1053 [CrossRef]
    [Google Scholar]
  5. Dossonnet V., Monedero V., Zagorec M., Galinier A., Pérez-Martínez G., Deutscher J. 2000; Phosphorylation of HPr by the bifunctional HPr Kinase/P-ser-H phosphatase from Lactobacillus casei controls catabolite repression and inducer exclusion but not inducer expulsion. J Bacteriol 182:2582–2590 [CrossRef]
    [Google Scholar]
  6. Egeter O., Brückner R. 1996; Catabolite repression mediated by the catabolite control protein CcpA in Staphylococcus xylosus. Mol Microbiol 21:739–749 [CrossRef]
    [Google Scholar]
  7. Faires N., Tobisch S., Bachem S., Martin-Verstraete I., Hecker M., Stülke J. 1999; The catabolite control protein CcpA controls ammonium assimilation in Bacillus subtilis. J Mol Microbiol Biotechnol 1:141–148
    [Google Scholar]
  8. Friedman A. M., Fischmann T. O., Steitz T. A. 1995; Crystal structure of lac repressor core tetramer and its implications for DNA looping. Science 268:1721–1727 [CrossRef]
    [Google Scholar]
  9. Fujita Y., Miwa Y., Galinier A., Deutscher J. 1995; Specific recognition of the Bacillus subtilis gnt cis-acting catabolite-responsive element by a protein complex formed between CcpA and seryl-phosphorylated HPr. Mol Microbiol 17:953–960 [CrossRef]
    [Google Scholar]
  10. Giammarinaro P., Paton J. C. 2002; Role of RegM, a homologue of the catabolite repressor protein CcpA, in the virulence of Streptococcus pneumoniae. Infect Immun 70:5454–5461 [CrossRef]
    [Google Scholar]
  11. Gordon A. J., Burns P. A., Fix D. F.7 other authors 1988; Missense mutation in the lacI gene of Escherichia coli. Inferences on the structure of the repressor protein. J Mol Biol 200:239–251 [CrossRef]
    [Google Scholar]
  12. Gosseringer R., Küster E., Galinier A., Deutscher J., Hillen W. 1997; Cooperative and non-cooperative DNA binding modes of catabolite control protein CcpA from Bacillus megaterium result from sensing two different signals. J Mol Biol 266:665–676 [CrossRef]
    [Google Scholar]
  13. Hueck C. J., Kraus A., Schmiedel D., Hillen W. 1995; Cloning, expression and functional analyses of the catabolite control protein CcpA from Bacillus megaterium. Mol Microbiol 16:855–864 [CrossRef]
    [Google Scholar]
  14. Jones B. E., Deutscher J., Klevit R. E., Dossonnet V., Küster E., Hillen W. 1997; Binding of the catabolite repressor protein CcpA to its DNA target is regulated by phosphorylation of its corepressor HPr. J Biol Chem 272:26530–26535 [CrossRef]
    [Google Scholar]
  15. Kim J. H., Voskuil M. I., Chambliss G. H. 1998; NADP, corepressor for the Bacillus catabolite control protein CcpA. Proc Natl Acad Sci U S A 95:9590–9595 [CrossRef]
    [Google Scholar]
  16. Kim H. J., Roux A., Sonenshein A. L. 2002; Direct and indirect roles of CcpA in regulation of Bacillus subtilis Krebs cycle genes. Mol Microbiol 45:179–190 [CrossRef]
    [Google Scholar]
  17. Kleina L. G., Miller J. H. 1990; Genetic studies of the lac repressor. XIII. Extensive amino acid replacements generated by the use of natural and synthetic nonsense suppressors. J Mol Biol 212:295–318 [CrossRef]
    [Google Scholar]
  18. Kraus A., Küster E., Wagner A., Hoffmann K., Hillen W. 1998; Identification of a co-repressor binding site in catabolite control protein CcpA. Mol Microbiol 30:955–963 [CrossRef]
    [Google Scholar]
  19. Küster E., Luesink E. J., de Vos W. M., Hillen W. 1996; Immunological crossreactivity to catabolite control protein CcpA from Bacillus megaterium is found in many Gram-positive bacteria. FEMS Microbiol Lett 139:109–115 [CrossRef]
    [Google Scholar]
  20. Küster E., Hilbich T., Dahl M. K., Hillen W. 1999a; Mutations in catabolite control protein CcpA separating growth effects from catabolite repression. J Bacteriol 181:4125–4128
    [Google Scholar]
  21. Küster E., Wagner A., Völker U., Hillen W. 1999b; Mutations in catabolite control protein CcpA showing glucose-independent regulation in Bacillus megaterium. J Bacteriol 181:7634–7638
    [Google Scholar]
  22. Landt O., Grunert H. P., Hahn U. 1990; A general method for rapid site-directed mutagenesis using the polymerase chain reaction. Gene 96:125–128 [CrossRef]
    [Google Scholar]
  23. Leboeuf C., Leblanc L., Auffray Y., Hartke A. 2000; Characterization of the ccpA gene of Enterococcus faecalis: identification of starvation-inducible proteins regulated byccpA. J Bacteriol 182:5799–5806 [CrossRef]
    [Google Scholar]
  24. Lewis M., Chang G., Horton N. C., Kercher M. A., Pace H. C., Schumacher M. A., Brennan R. G., Lu P. 1996; Crystal structure of the lactose operon repressor and its complexes with DNA and inducer. Science 271:1247–1254 [CrossRef]
    [Google Scholar]
  25. Lokman B. C., Heerikhuisen M., Borsboom Y., Chaillou S., Postma P. W., Pouwels P. H., Leer R. J., van den Broek A. 1997; Regulation of expression of the Lactobacillus pentosus xylAB operon. J Bacteriol 179:5391–5397
    [Google Scholar]
  26. Ludwig H., Homuth G., Schmalisch M., Dyka F. M., Hecker M., Stülke J. 2001; Transcription of glycolytic genes and operons in Bacillus subtilis: evidence for the presence of multiple levels of control of the gapA operon. Mol Microbiol 41:409–422 [CrossRef]
    [Google Scholar]
  27. Ludwig H., Meinken C., Matin A., Stülke J. 2002; Insufficient expression of the ilv-leu operon encoding enzymes of branched-chain amino acid biosynthesis limits growth of aBacillus subtilis ccpA mutant. J Bacteriol 184:5174–5178 [CrossRef]
    [Google Scholar]
  28. Luesink E. J., van Herpen R. E., Grossiord B. P., Kuipers O. P., de Vos W. M. 1998; Transcriptional activation of the glycolytic las operon and catabolite repression of the gal operon in Lactococcus lactis are mediated by the catabolite control protein CcpA. Mol Microbiol 30:789–798 [CrossRef]
    [Google Scholar]
  29. Mahr K., Esteban C. D., Hillen W., Titgemeyer F., Pérez-Martínez G. 2002; Cross communication between components of carbon catabolite repression of Lactobacillus casei and Bacillus megaterium. J Mol Microbiol Biotechnol 4:489–494
    [Google Scholar]
  30. Miwa Y., Saikawa M., Fujita Y. 1994; Possible function and some properties of the CcpA protein of Bacillus subtilis. Microbiology 140:2567–2575 [CrossRef]
    [Google Scholar]
  31. Monedero V., Gosalbes M. J., Pérez-Martínez G. 1997; Catabolite repression in Lactobacillus casei ATCC 393 is mediated by CcpA. J Bacteriol 179:6657–6664
    [Google Scholar]
  32. Moreno M. S., Schneider B. L., Maile R. R., Weyler W., Saier M. H., Jr. 2001; Catabolite repression mediated by the CcpA protein in Bacillus subtilis: novel modes of regulation revealed by whole-genome analyses. Mol Microbiol 39:1366–1381 [CrossRef]
    [Google Scholar]
  33. Müller-Hill B. 1983; Sequence homology between Lac and Gal repressors and three sugar-binding periplasmic proteins. Nature 302:163–164 [CrossRef]
    [Google Scholar]
  34. Olah G. A., Trakhanov S., Trewhella J., Quiocho F. A. 1993; Leucine/isoleucine/valine-binding protein contracts upon binding of ligand. J Biol Chem 268:16241–16247
    [Google Scholar]
  35. Pérez-Martínez G., Kok J., Venema G., Van Dijl J. M., Smith H., Bron S. 1992; Protein export elements from Lactococcus lactis. Mol Gen Genet 234:401–411 [CrossRef]
    [Google Scholar]
  36. Posno M., Heulvelmans P. T. H. M., Lokman B. C., Powels P. H., Leer R. J., van Luijk N., van Gienzen M. J. F. 1991; Incompatibility of Lactobacillus vectors with replicons derived from small cryptic Lactobacillus plasmids and segregational instability of the induced vectors. Appl Environ Microbiol 57:1822–1828
    [Google Scholar]
  37. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  38. Schumaker M. A., Choi K. Y., Zalkin H., Brennan R. G. 1994; Crystal structure of LacI member, PurR, bound to DNA: minor groove binding by α helices. Science 266:763–770 [CrossRef]
    [Google Scholar]
  39. Sharff A. J., Rodseth L. E., Spurlino J. C., Quiocho F. A. 1992; Crystallographic evidence of a large ligand-induced hinge-twist motion between the two domains of the maltodextrin binding protein involved in active transport and chemotaxis. Biochemistry 31:10657–10663 [CrossRef]
    [Google Scholar]
  40. Stanley N. R., Britton R. A., Grossman A. D., Lazazzera B. A. 2003; Identification of catabolite repression as a physiological regulator of biofilm formation by Bacillus subtilis by use of DNA microarrays. J Bacteriol 185:1951–1957 [CrossRef]
    [Google Scholar]
  41. Titgemeyer F., Hillen W. 2002; Global control of sugar metabolism: a gram-positive solution. Antonie van Leeuwenhoek 82:59–71 [CrossRef]
    [Google Scholar]
  42. Turinsky A. J., Moir-Blais T. R., Grundy F. J., Henkin T. M. 2000; Bacillus subtilis ccpA gene mutants specifically defective in activation of acetoin biosynthesis. J Bacteriol 182:5611–5614 [CrossRef]
    [Google Scholar]
  43. Viana R., Monedero V., Dossonnet V., Vadeboncoeur C., Pérez-Martínez G., Deutscher J. 2000; Enzyme I and HPr from Lactobacillus casei: their role in sugar transport, carbon catabolite repression and inducer exclusion. Mol Microbiol 36:570–584
    [Google Scholar]
  44. Weikert M. J., Adhya S. 1992; A family of bacterial regulators homologous to Gal and Lac repressors. J Biol Chem 267:15869–15874
    [Google Scholar]
  45. Wen Z. T., Burne R. A. 2002; Functional genomics approach to identifying genes required for biofilm development by Streptococcus mutans. Appl Environ Microbiol 68:1196–1203 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26658-0
Loading
/content/journal/micro/10.1099/mic.0.26658-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed