1887

Abstract

Cell-surface hydrophobicity (CSH) in contributes to virulence and can be conveniently regulated in planktonic cultures by altering growth temperature. The gene is the first candidate gene that has been demonstrated to play a role in affecting the CSH phenotype. However, the primary amino acid sequence of the gene product suggests that the protein should be restricted to the cytoplasm. A majority of the protein appears to demonstrate that localization. Cell-surface biotinylation and limited glucanase digestion were used to determine and estimate the relative amount of Csh1p in the extracellular compartment in comparison to the cytoplasmic pool. Additionally, Western and Northern blotting were used to assess expression of the gene under different growth conditions. Compared with cells grown at 23 °C, the total cellular levels of Csh1p are significantly greater at elevated growth temperatures. Detection of Csh1p on the cell surface correlates with the level of overall protein expression. The temperature-dependent regulation and surface presentation of Csh1p suggests a mechanism for regulating the CSH phenotype.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26656-0
2004-02-01
2024-12-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/2/mic1500285.html?itemId=/content/journal/micro/10.1099/mic.0.26656-0&mimeType=html&fmt=ahah

References

  1. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. 1999 Short Protocols in Molecular Biology , 4th edn. New York: Wiley;
    [Google Scholar]
  2. Chaffin W. L., Lopez-Ribot J. L., Casanova M., Gozalbo D., Martinez J. P. 1998; Cell wall and secreted proteins of Candida albicans : identification, function, and expression. Microbiol Mol Biol Rev 62:130–180
    [Google Scholar]
  3. Chauhan N., Li D., Singh P., Calderone R., Kruppa M. 2002; The cell wall of Candida spp. In Candida and Candidiasis pp 159–175 Edited by Calderone R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  4. Cleves A. E. 1997; Protein transports: the nonclassical ins and outs. Curr Biol 7:R318–R320 [CrossRef]
    [Google Scholar]
  5. Cleves A. E., Cooper D. N., Barondes S. H., Kelly R. B. 1996; A new pathway for protein export in Saccharomyces cerevisiae . J Cell Biol 133:1017–1026 [CrossRef]
    [Google Scholar]
  6. Delgado M. L., Gil M. L., Gozalbo D. 2003; Candida albicans TDH3 gene promotes secretion of internal invertase when expressed in Saccharomyces cerevisiae as a glyceraldehyde-3-phosphate dehydrogenase-invertase fusion protein. Yeast 20:713–722 [CrossRef]
    [Google Scholar]
  7. Delneri D., Gardner D. C., Bruschi C. V., Oliver S. G. 1999; Disruption of seven hypothetical aryl alcohol dehydrogenases and construction of a multiple knockout strain. Yeast 15:1681–1689 [CrossRef]
    [Google Scholar]
  8. Glee P. M., Sundstrom P., Hazen K. C. 1995; Expression of surface hydrophobic proteins by Candida albicans in vivo. Infect Immun 63:1373–1379
    [Google Scholar]
  9. Glee P. M., Masuoka J., Ozier W. T., Hazen K. C. 1996; Presence of multiple laminin- and fibronectin-binding proteins in cell wall extract of Candida albicans : influence of dialysis. J Med Vet Mycol 34:57–61 [CrossRef]
    [Google Scholar]
  10. Glee P. M., Cutler J. E., Benson E. E., Bargatze R. F., Hazen K. C. 2001; Inhibition of hydrophobic protein-mediated Candida albicans attachment to endothelial cells during physiologic shear flow. Infect Immun 69:2815–2820 [CrossRef]
    [Google Scholar]
  11. Hazen B. W., Hazen K. C. 1988; Dynamic expression of cell surface hydrophobicity during initial yeast cell growth and before germ tube formation of Candida albicans . Infect Immun 56:2521–2525
    [Google Scholar]
  12. Hazen B. W., Hazen K. C. 1989; Isolation of hydrophobic and hydrophilic variants of Candida albicans . FEMS Microbiol Lett 48:167–171
    [Google Scholar]
  13. Hazen K. C. 1989; Participation of yeast cell surface hydrophobicity in adherence of Candida albicans to human epithelial cells. Infect Immun 57:1894–1900
    [Google Scholar]
  14. Hazen K. C., Hazen B. W. 1987; A polystyrene microsphere assay for detecting surface hydrophobicity variations within Candida albicans populations. J Microbiol Methods 6:289–299 [CrossRef]
    [Google Scholar]
  15. Hazen K. C., Hazen B. W. 1993; Surface hydrophobic and hydrophilic protein alterations in Candida albicans . FEMS Microbiol Lett 107:83–87 [CrossRef]
    [Google Scholar]
  16. Hazen K. C., Lay J. G., Hazen B. W., Fu R. C., Murthy S. 1990; Partial biochemical characterization of cell surface hydrophobicity and hydrophilicity of Candida albicans . Infect Immun 58:3469–3476
    [Google Scholar]
  17. Kapteyn J. C., Hoyer L. L., Hecht J. E. 6 other authors 2000; The cell wall architecture of Candida albicans wild-type cells and cell wall-defective mutants. Mol Microbiol 35:601–611
    [Google Scholar]
  18. Klis F. M., Hellingwerf K, de Groot P. 2001; Molecular organization of the cell wall of Candida albicans . Med Mycol 39:1–8 [CrossRef]
    [Google Scholar]
  19. Klis F. M., Mol P., Hellingwerf K., Brul S. 2002; Dynamics of cell wall structure in Saccharomyces cerevisiae . FEMS Microbiol Rev 26:239–256 [CrossRef]
    [Google Scholar]
  20. Klotz S. A., Pendrak M. L., Hein R. C. 2001; Antibodies to alpha5beta1 and alpha(v)beta3 integrins react with Candida albicans alcohol dehydrogenase. Microbiology 147:3159–3164
    [Google Scholar]
  21. Masuoka J., Hazen K. C. 1997; Cell wall protein mannosylation determines Candida albicans cell surface hydrophobicity. Microbiology 143:3015–3021 [CrossRef]
    [Google Scholar]
  22. Masuoka J., Hazen K. C. 1999; Differences in the acid-labile component of Candida albicans mannan from hydrophobic and hydrophilic yeast cells. Glycobiology 9:1281–1286 [CrossRef]
    [Google Scholar]
  23. Masuoka J., Wu G., Glee P. M., Hazen K. C. 1999; Inhibition of Candida albicans attachment to extracellular matrix by antibodies which recognize hydrophobic cell wall proteins. FEMS Immunol Med Microbiol 24:421–429 [CrossRef]
    [Google Scholar]
  24. Masuoka J., Guthrie L. N., Hazen K. C. 2002; Complications in cell-surface labelling by biotinylation of Candida albicans due to avidin conjugate binding to cell-wall proteins. Microbiology 148:1073–1079
    [Google Scholar]
  25. McCabe P., Van Alfen N. 1999; Secretion of cryparin, a fungal hydrophobin. Appl Environ Microbiol 65:5431–5435
    [Google Scholar]
  26. Pitarch A., Pardo M., Jimenez A., Pla J., Gil C., Sanchez M., Nombela C. 1999; Two-dimensional gel electrophoresis as analytical tool for identifying Candida albicans immunogenic proteins. Electrophoresis 20:1001–1010 [CrossRef]
    [Google Scholar]
  27. Pitarch A., Sanchez M., Nombela C., Gil C. 2002; Sequential fractionation and two-dimensional gel analysis unravels the complexity of the fimorphic fungus Candida albicans cell wall proteome. Mol Cell Proteomics 1:967–982 [CrossRef]
    [Google Scholar]
  28. Ponton J., Omaetxebarria M. J., Elguezabal N., Alvarez M., Moragues M. D. 2001; Immunoreactivity of the fungal cell wall. Med Mycol 39:101–110 [CrossRef]
    [Google Scholar]
  29. Rubartelli A., Sitia R. 1997; Secretion of mammalian proteins that lack a signal sequence. In Unusual Secretory Pathways: from Bacteria to Man pp 87–114 Edited by Kuchler K., Rubartelli A., Holland B. New York: Chapman and Hall;
    [Google Scholar]
  30. Singleton D. R., Masuoka J., Hazen K. C. 2001; Cloning and analysis of a Candida albicans gene that affects cell surface hydrophobicity. J Bacteriol 183:3582–3588 [CrossRef]
    [Google Scholar]
  31. Wilson R. B., Davis D., Enloe B. M., Mitchell A. P. 2000; A recyclable Candida albicans URA3 cassette for PCR product-directed gene disruptions. Yeast 16:65–70 [CrossRef]
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.26656-0
Loading
/content/journal/micro/10.1099/mic.0.26656-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error