1887

Abstract

In , as in many Gram-positive bacteria, a gene is located downstream from the cluster of cell-division- and cell-wall-related genes. This gene () is mostly expressed during exponential growth, and the protein encoded, DivIVA bears some sequence similarity to antigen 84 (Ag84) from mycobacteria and was detected with monoclonal antibodies against Ag84. Disruption experiments using an internal fragment of the gene or a disrupted cloned in a suicide conjugative plasmid were unsuccessful, suggesting that the gene is needed for cell viability in . Transformation of with a multicopy plasmid containing drastically altered the morphology of the corynebacterial cells, which became larger and bulkier, and a GFP fusion to DivIVA mainly localized to the ends of corynebacterial cells. This localization pattern, together with the overproduction phenotype, suggests that DivIVA may be important in regulating the apical growth of daughter cells.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26653-0
2003-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/12/mic1493531.html?itemId=/content/journal/micro/10.1099/mic.0.26653-0&mimeType=html&fmt=ahah

References

  1. Adham S. A., Rodriguez S., Ramos A., Santamaria R. I., Gil J. A. 2003; Improved vectors for transcriptional/translational signal screening in corynebacteria using the melC operon from Streptomyces glaucescens as reporter. Arch Microbiol 180:53–59
    [Google Scholar]
  2. Adham S. A., Honrubia P., Diaz M., Fernandez-Abalos J. M., Santamaria R. I., Gil J. A. 2001; Expression of the genes coding for the xylanase Xys1 and the cellulase Cel1 from the straw-decomposing Streptomyces halstedii JM8 cloned into the amino-acid producer Brevibacterium lactofermentum ATCC13869. Arch Microbiol 177:91–97
    [Google Scholar]
  3. Cha J. H., Stewart G. C. 1997; The divIVA minicell locus of Bacillus subtilis . J Bacteriol 179:1671–1683
    [Google Scholar]
  4. Cole S. T., Brosch R., Parkhill J. 44 other authors 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544
    [Google Scholar]
  5. Daniel R. A., Errington J. 2003; Control of cell morphogenesis in bacteria: two distinct ways to make a rod-shaped cell. Cell 113:767–776
    [Google Scholar]
  6. Dziadek J., Madiraju M. V., Rutherford S. A., Atkinson M. A., Rajagopalan M. 2002; Physiological consequences associated with overproduction of Mycobacterium tuberculosis FtsZ in mycobacterial hosts. Microbiology 148:961–971
    [Google Scholar]
  7. Edwards D. H., Errington J. 1997; The Bacillus subtilis DivIVA protein targets to the division septum and controls the site specificity of cell division. Mol Microbiol 24:905–915
    [Google Scholar]
  8. Edwards D. H., Thomaides H. B., Errington J. 2000; Promiscuous targeting of Bacillus subtilis cell division protein DivIVA to division sites in Escherichia coli and fission yeast. EMBO J 19:2719–2727
    [Google Scholar]
  9. Falk P. J., Ervin K. M., Volk K. S., Ho H. T. 1996; Biochemical evidence for the formation of a covalent acyl-phosphate linkage between UDP- N -acetylmuramate and ATP in the Escherichia coli UDP- N -acetylmuramate : l-alanine ligase-catalyzed reaction. Biochemistry 35:1417–1422
    [Google Scholar]
  10. Fernandez-Gonzalez C., Gil J. A., Mateos L. M., Schwarzer A., Schafer A., Kalinowski J., Puhler A., Martin J. F. 1996; Construction of l-lysine-overproducing strains of Brevibacterium lactofermentum by targeted disruption of the hom and thrB genes. Appl Microbiol Biotechnol 46:554–558
    [Google Scholar]
  11. Flardh K. 2003; Essential role of DivIVA in polar growth and morphogenesis in Streptomyces coelicolor A3(2. Mol Microbiol 49:1523–1536
    [Google Scholar]
  12. Gourdon P., Lindley N. D. 1999; Metabolic analysis of glutamate production by Corynebacterium glutamicum . Metab Eng 1:224–231
    [Google Scholar]
  13. Hanahan D. 1983; Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580
    [Google Scholar]
  14. Harry E. J., Lewis P. J. 2003; Early targeting of Min proteins to the cell poles in germinated spores of Bacillus subtilis : evidence for division apparatus-independent recruitment of Min proteins to the division site. Mol Microbiol 47:37–48
    [Google Scholar]
  15. Hermann T., Wersch G., Uhlemann E. M., Schmid R., Burkovski A. 1998; Mapping and identification of Corynebacterium glutamicum proteins by two-dimensional gel electrophoresis and microsequencing. Electrophoresis 19:3217–3221
    [Google Scholar]
  16. Hermans P. W., Abebe F., Kuteyi V. I., Kolk A. H., Thole J. E., Harboe M. 1995; Molecular and immunological characterization of the highly conserved antigen 84 from Mycobacterium tuberculosis and Mycobacterium leprae . Infect Immun 63:954–960
    [Google Scholar]
  17. Holmes D. S., Quigley M. 1981; A rapid boiling method for the preparation of bacterial plasmids. Anal Biochem 114:193–197
    [Google Scholar]
  18. Honrubia M. P., Fernandez F. J., Gil J. A. 1998; Identification, characterization, and chromosomal organization of the ftsZ gene from Brevibacterium lactofermentum . Mol Gen Genet 259:97–104
    [Google Scholar]
  19. Honrubia M. P., Ramos A., Gil J. A. 2001; The cell division genes ftsQ and ftsZ , but not the three downstream open reading frames YFIH, ORF5 and ORF6, are essential for growth and viability in Brevibacterium lactofermentum ATCC 13869. Mol Genet Genomics 265:1022–1030
    [Google Scholar]
  20. Jager W., Schafer A., Puhler A., Labes G., Wohlleben W. 1992; Expression of the Bacillus subtilis sacB gene leads to sucrose sensitivity in the gram-positive bacterium Corynebacterium glutamicum but not in S treptomyces lividans . J Bacteriol 174:5462–5465
    [Google Scholar]
  21. Kieser T., Bibb M. J., Buttner M. J., Chen B. F., Hopwood D. A. 2000 Practical Streptomyces Genetics Norwich: John Innes Foundation;
  22. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  23. Latch J. N., Margolin W. 1997; Generation of buds, swellings, and branches instead of filaments after blocking the cell cycle of Rhizobium meliloti . J Bacteriol 179:2373–2381
    [Google Scholar]
  24. Lupas A., Van Dyke M., Stock J. 1991; Predicting coiled coils from protein sequences. Science 252:1162–1164
    [Google Scholar]
  25. Marston A. L., Thomaides H. B., Edwards D. H., Sharpe M. E., Errington J. 1998; Polar localization of the MinD protein of Bacillus subtilis and its role in selection of the mid-cell division site. Genes Dev 12:3419–3430
    [Google Scholar]
  26. Massidda O., Anderluzzi D., Friedli L., Feger G. 1998; Unconventional organization of the division and cell wall gene cluster of Streptococcus pneumoniae . Microbiology 144:3069–3078
    [Google Scholar]
  27. Muchova K., Kutejova E., Scott D. J., Brannigan J. A., Lewis R. J., Wilkinson A. J., Barak I. 2002; Oligomerization of the Bacillus subtilis division protein DivIVA. Microbiology 148:807–813
    [Google Scholar]
  28. Nakayama K., Araki K., Kase H. 1978; Microbial production of essential amino acid with Corynebacterium glutamicum mutants. Adv Exp Med Biol 105:649–661
    [Google Scholar]
  29. Patek M., Eikmanns B. J., Patek J., Sahm H. 1996; Promoters from Corynebacterium glutamicum : cloning, molecular analysis and search for a consensus motif. Microbiology 142:1297–1309
    [Google Scholar]
  30. Perez-Castineira J. R., Alvar J., Ruiz-Perez L. M., Serrano A. 2002; Evidence for a wide occurrence of proton-translocating pyrophosphatase genes in parasitic and free-living protozoa. Biochem Biophys Res Commun 294:567–573
    [Google Scholar]
  31. Ramos A., Adham S. A., Gil J. A. 2003; Cloning and expression of the inorganic pyrophosphatase gene from the amino acid producer Brevibacterium lactofermentum ATCC 13869. FEMS Microbiol Lett 225:85–92
    [Google Scholar]
  32. Santamaria R. I., Gil J. A., Martin J. F. 1985; High-frequency transformation of Brevibacterium lactofermentum protoplasts by plasmid DNA. J Bacteriol 162:463–467
    [Google Scholar]
  33. Schafer A., Kalinowski J., Simon R., Seep-Feldhaus A. H., Puhler A. 1990; High-frequency conjugal plasmid transfer from gram-negative Escherichia coli to various gram-positive coryneform bacteria. J Bacteriol 172:1663–1666
    [Google Scholar]
  34. Schafer A., Tauch A., Jager W., Kalinowski J., Thierbach G., Puhler A. 1994; Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum . Gene 145:69–73
    [Google Scholar]
  35. Siemering K. R., Golbik R., Sever R., Haseloff J. 1996; Mutations that suppress the thermosensitivity of green fluorescent protein. Curr Biol 6:1653–1663
    [Google Scholar]
  36. Snapper S. B., Melton R. E., Mustafa S., Kieser T., Jacobs W. R. Jr 1990; Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis . Mol Microbiol 4:1911–1919
    [Google Scholar]
  37. Tabor S., Richardson C. C. 1985; A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci U S A 82:1074–1078
    [Google Scholar]
  38. Thomaides H. B., Freeman M., El Karoui M., Errington J. 2001; Division site selection protein DivIVA of Bacillus subtilis has a second distinct function in chromosome segregation during sporulation. Genes Dev 15:1662–1673
    [Google Scholar]
  39. Youngman P., Perkins J. B., Losick R. 1984; A novel method for the rapid cloning in Escherichia coli of the Bacillus subtilis chromosomal DNA adjacent to Tn917 insertions. Mol Gen Genet 195:423–433
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26653-0
Loading
/content/journal/micro/10.1099/mic.0.26653-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error