1887

Abstract

The chlamydospore is a distinctive morphological feature of the fungal pathogen that can be induced to form in oxygen-limited environments and has been reported in clinical specimens. Chlamydospores are not produced by the model yeasts and , so there is limited understanding of the pathways that govern their development. Here, the results of a forward genetic approach that begins to define the genetic control of chlamydospore formation are described. Six genes – , , , , and – are required for efficient chlamydospore formation, based on the phenotypes of homozygous insertion mutants and reconstituted strains. Mutations in , and completely abolish chlamydospore formation. Mutations in , and delay normal chlamydospore formation. The involvement of alkaline pH-response regulators Rim13p and Mds3p in chlamydospore formation is unexpected in view of the fact that chlamydospores in the inducing conditions used here are repressed in alkaline media.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26640-0
2003-12-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/12/mic1493629.html?itemId=/content/journal/micro/10.1099/mic.0.26640-0&mimeType=html&fmt=ahah

References

  1. Al-Hedaithy, S. S. & Fotedar, R. ( 2002; ). Recovery and studies on chlamydospore-negative Candida albicans isolated from clinical specimens. Med Mycol 40, 301–306.[CrossRef]
    [Google Scholar]
  2. Alonso-Monge, R., Navarro-Garcia, F., Molero, G., Diez-Orejas, R., Gustin, M., Pla, J., Sanchez, M. & Nombela, C. ( 1999; ). Role of the mitogen-activated protein kinase Hog1p in morphogenesis and virulence of Candida albicans. J Bacteriol 181, 3058–3068.
    [Google Scholar]
  3. Alonso-Monge, R., Navarro-Garcia, F., Roman, E., Negredo, A., Eisman, B., Nombela, C. & Pla, J. ( 2003; ). The Hog1 mitogen-activated protein kinase is essential in the oxidative stress response and chlamydospore formation in Candida albicans. Eukaryotic Cell 2, 351–361.[CrossRef]
    [Google Scholar]
  4. Asleson, C. M., Bensen, E. S., Gale, C. A., Melms, A.-S., Kurischko, C. & Berman, J. ( 2001; ). Candida albicans INT1-induced filamentation in Saccharomyces cerevisiae depends on Sla2p. Mol Cell Biol 21, 1272–1284.[CrossRef]
    [Google Scholar]
  5. Berman, J. & Sudbery, P. E. ( 2002; ). Candida albicans: a molecular revolution built on lessons from budding yeast. Nat Rev Genet 3, 918–930.
    [Google Scholar]
  6. Boveris, A. & Cadenas, E. ( 1982; ). Production of superoxide radicals and hydrogen peroxide in mitochondria. In Superoxide Dismutase, vol. II, pp. 15–30. Edited by L. Oberley. Boca Raton, FL: CRC Press.
  7. Calderone, R. A. ( 2002; ). Candida and Candidiasis. Washington, DC: American Society for Microbiology.
  8. Chabasse, D., Bouchara, J. P., de Gentile, L. & Chennebault, J. M. ( 1988; ). Chlamydospores de Candida albicans observees in vivo chez un patient attaint de SIDA. Ann Biol Clin (Paris) 46, 817–818.
    [Google Scholar]
  9. Davis, D., Edwards, J. E., Jr, Mitchell, A. P. & Ibrahim, A. S. ( 2000a; ). Candida albicans RIM101 pH response pathway is required for host–pathogen interactions. Infect Immun 68, 5953–5959.[CrossRef]
    [Google Scholar]
  10. Davis, D., Wilson, R. B. & Mitchell, A. P. ( 2000b; ). RIM101-dependent and -independent pathways govern pH responses in Candida albicans. Mol Cell Biol 20, 971–978.[CrossRef]
    [Google Scholar]
  11. Davis, D. A., Bruno, V. M., Loza, L., Filler, S. G. & Mitchell, A. P. ( 2002; ). Candida albicans Mds3p, a conserved regulator of pH responses and virulence identified through insertional mutagenesis. Genetics 162, 1573–1581.
    [Google Scholar]
  12. Dujardin, L., Walbaum, S. & Biguet, J. ( 1980a; ). Chlamydosporulation de Candida albicans: deroulement de la morphogenese, influence de la lumiere et de la densite densemencement. Ann Microbiol (Paris) 131A, 141–149.
    [Google Scholar]
  13. Dujardin, L., Walbaum, S. & Biguet, J. ( 1980b; ). Influence de la concentration du glucose et de l'azote sur la morphologie de Candida albicans et la formation de ses chlamydospores dans un milieu de culture synthetique. Mycopathologia 71, 113–118.[CrossRef]
    [Google Scholar]
  14. Enloe, B., Diamond, A. & Mitchell, A. P. ( 2000; ). A single-transformation gene function test in diploid Candida albicans. J Bacteriol 182, 5730–5736.[CrossRef]
    [Google Scholar]
  15. Fabrizio, P., Pozza, F., Pletcher, S. D., Gendron, C. M. & Longo, V. D. ( 2001; ). Regulation of longevity and stress resistance by Sch9 in yeast. Science 292, 288–290.[CrossRef]
    [Google Scholar]
  16. Fazzio, T. G., Kooperberg, C., Goldmark, J. P., Neal, C., Basom, R., Delrow, J. & Tsukiyama, T. ( 2001; ). Widespread collaboration of Isw2 and Sin3-Rpd3 chromatin remodeling complexes in transcriptional repression. Mol Cell Biol 21, 6450–6460.[CrossRef]
    [Google Scholar]
  17. Giusani, A. D., Vinces, M. & Kumamoto, C. A. ( 2002; ). Invasive filamentous growth of Candida albicans is promoted by Czf1p-dependent relief of EFg1p-mediated repression. Genetics 160, 1749–1753.
    [Google Scholar]
  18. Goldmark, J. P., Fazzio, T. G., Estep, P. W., Church, G. M. & Tsukiyama, T. ( 2000; ). The Isw2 chromatin remodeling complex represses early meiotic genes upon recruitment by Ume6p. Cell 103, 423–433.[CrossRef]
    [Google Scholar]
  19. Jansons, V. K. & Nickerson, W. J. ( 1970; ). Induction, morphogenesis, and germination of the chlamydospore of Candida albicans. J Bacteriol 104, 910–921.
    [Google Scholar]
  20. Lamb, T. M. & Mitchell, A. P. ( 2003; ). The transcription factor Rim101p governs ion tolerance and cell differentiation by direct repression of the regulatory genes NRG1 and SMP1 in Saccharomyces cerevisiae. Mol Cell Biol 23, 677–686.[CrossRef]
    [Google Scholar]
  21. Lamb, T. M., Xu, W., Diamond, A. & Mitchell, A. P. ( 2001; ). Alkaline response genes of Saccharomyces cerevisiae and their relationship to the RIM101 pathway. J Biol Chem 276, 1850–1856.[CrossRef]
    [Google Scholar]
  22. Liu, H. ( 2001; ). Transcriptional control of dimorphism in Candida albicans. Curr Opin Microbiol 4, 728–735.[CrossRef]
    [Google Scholar]
  23. McGinnis, M. R. ( 1980; ). Laboratory Handbook of Medical Mycology. New York, London, Toronto, Sydney, San Francisco: Academic Press.
  24. Minczuk, M., Dmochowska, A., Palczewska, M. & Stepien, P. P. ( 2002; ). Overexpressed yeast mitochondrial putative RNA helicase Mss116 partially restores proper mtRNA metabolism in strains lacking the Suv3 mtRNA helicase. Yeast 19, 1285–1293.[CrossRef]
    [Google Scholar]
  25. Odds, F. C. ( 1988; ). Candida and candidosis, 2nd edn. London, UK: Bailliere Tindall.
  26. Porta, A., Ramon, A. M. & Fonzi, W. A. ( 1999; ). PRR1, a homolog of Aspergillus nidulans palF, controls pH-dependent gene expression and filamentation in Candida albicans. J Bacteriol 181, 7516–7523.
    [Google Scholar]
  27. Ramon, A. M., Porta, A. & Fonzi, W. A. ( 1999; ). Effect of environmental pH on morphological development of Candida albicans is mediated via the PacC-related transcription factor encoded by PRR2. J Bacteriol 181, 7524–7530.
    [Google Scholar]
  28. Raudonis, B. M. & Smith, A. G. ( 1982; ). Germination of the chlamydospores of Candida albicans. Mycopathologia 78, 87–91.[CrossRef]
    [Google Scholar]
  29. Sonneborn, A., Bockmuhl, D. P. & Ernst, J. F. ( 1999; ). Chlamydospore formation in Candida albicans requires the Efg1p morphogenetic regulator. Infect Immun 67, 5514–5517.
    [Google Scholar]
  30. Spreghini, E., Davis, D. A., Subaran, R., Kim, M. & Mitchell, A. P. ( 2003; ). Roles of Candida albicans Dfg5p and Dcw1p cell surface proteins in growth and hypha formation. Eukaryotic Cell 2, 746–755.[CrossRef]
    [Google Scholar]
  31. Thevelein, J. M. & de Winde, J. H. ( 1999; ). Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol Microbiol 33, 904–918.[CrossRef]
    [Google Scholar]
  32. Vershon, A. K. & Pierce, M. ( 2000; ). Transcriptional regulation of meiosis in yeast. Curr Opin Cell Biol 12, 334–339.[CrossRef]
    [Google Scholar]
  33. Vidotto, V., Bruatto, M., Accattatis, G. & Caramello, S. ( 1996; ). Observation on the nucleic acids in the chlamydospores of Candida albicans. Microbiologica 19, 327–334.
    [Google Scholar]
  34. Wilson, R. B., Davis, D. & Mitchell, A. P. ( 1999; ). Rapid hypothesis testing with Candida albicans through gene disruption with short homology regions. J Bacteriol 181, 1868–1874.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26640-0
Loading
/content/journal/micro/10.1099/mic.0.26640-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error