1887

Abstract

The enzymes and genes responsible for the catabolism of higher alkylphenols have not been characterized in aerobic bacteria. sp. strain KL28 can utilize a wide range of alkylphenols, which include the 4--alkylphenols (C–C). The genes, designated as (for ong-chain lkyphenols), encoding enzymes for the catabolic pathway were cloned from chromosomal DNA and sequenced. The genes are located in a 13·2 kb region with 14 ORFs in the order and with the same transcriptional orientation. The gene is transcribed independently and encodes a member of the XylR/DmpR positive transcriptional regulators. , the first gene in the operon, encodes catechol 2,3-dioxygenase (C23O). The and genes encode a multicomponent phenol hydroxylase (mPH) and enzymes that degrade derivatives of 2-hydroxymuconic semialdehyde (HMS) to TCA cycle intermediates, respectively. The promoter contains motifs at positions −24(GG) and −12(GC) which are typically found in -dependent promoters. A promoter assay using a  : :  transcriptional fusion plasmid showed that promoter activity is inducible and that it responds to a wide range of (alkyl)phenols. The structural genes encoding enzymes required for this catabolism are similar (42–69 %) to those encoded on a catabolic pVI150 plasmid from an archetypal phenol degrader, sp. CF600. However, the locus does not include genes encoding HMS hydrolase and ferredoxin. The latter is known to be functionally associated with C23O for use of 4-alkylcatechols as substrates. The arrangement of the catabolic genes is not commonly found in other -cleavage operons. Substrate specificity studies show that mPH preferentially oxidizes 3- and 4-alkylphenols to 4-alkylcatechols. C23O preferentially oxidizes 4-alkylcatechols via proximal (2,3) cleavage. This indicates that these two key enzymes have unique substrate preferences and lead to the establishment of the initial steps of the lap pathway in strain KL28.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26628-0
2003-11-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/11/mic1493265.html?itemId=/content/journal/micro/10.1099/mic.0.26628-0&mimeType=html&fmt=ahah

References

  1. Abril M. A., Buck M., Ramos J. L. 1991; Activation of the Pseudomonas TOL plasmid upper pathway operon. Identification of binding sites for the positive regulator XylR and for integration host factor protein. J Biol Chem 266:15832–15838
    [Google Scholar]
  2. Ajithkumar B., Ajithkumar V. P., Iriye R. 2003; Degradation of 4-amylphenol and 4-hexylphenol by a new activated sludge isolate of Pseudomonas veronii and proposal for a new subspecies status. Res Microbiol 154:17–23
    [Google Scholar]
  3. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402
    [Google Scholar]
  4. Arai H., Akahira S., Ohishi T., Maeda M., Kudo T. 1998; Adaptation of Comamonas testosteroni TA441 to utilize phenol: organization and regulation of the genes involved in phenol degradation. Microbiology 144:2895–2903
    [Google Scholar]
  5. Arai H., Akahira S., Ohishi T., Kudo T. 1999; Adaptation of Comamonas testosteroni TA441 to utilization of phenol by spontaneous mutation of the gene for a trans-acting factor. Mol Microbiol 33:1132–1140
    [Google Scholar]
  6. Arai H., Ohishi T., Chang M. Y., Kudo T. 2000; Arrangement and regulation of the genes for meta-pathway enzymes required for degradation of phenol in Comamonas testosteroni TA441. Microbiology 146:1707–1715
    [Google Scholar]
  7. Arenghi F. L., Berlanda D., Galli E., Sello G., Barbieri P. 2001; Organization and regulation of meta cleavage pathway genes for toluene and o-xylene derivative degradation in Pseudomonas stutzeri OX1. Appl Environ Microbiol 67:3304–3308
    [Google Scholar]
  8. Ausubel F. M. R. B., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. 1990 Current Protocols in Molecular Biology New York: Wiley;
  9. Ballou P. D. 1982; Flavoprotein monooxygenases. In Flavins and Flavoproteins pp  301–310 Edited by Massey V., Williams C. H. Amsterdam: Elsevier Science Publishing;
    [Google Scholar]
  10. Bartilson M., Shingler V. 1989; Nucleotide sequence and expression of the catechol 2,3-dioxygenase-encoding gene of phenol-catabolizing Pseudomonas CF600. Gene 85:233–238
    [Google Scholar]
  11. Bayly R. C., Dagley S., Gibson D. T. 1966; The metabolism of cresols by species of Pseudomonas. Biochem J 101:293–301
    [Google Scholar]
  12. Benjamin R. C., Voss J. A., Kunz D. A. 1991; Nucleotide sequence of xylE from the TOL pDK1 plasmid and structural comparison with isofunctional catechol-2,3-dioxygenase genes from TOL, pWW0 and NAH7. J Bacteriol 173:2724–2728
    [Google Scholar]
  13. Bertoni G., Bolognese F., Galli E., Barbieri P. 1996; Cloning of the genes for and characterization of the early stages of toluene and o-xylene catabolism in Pseudomonas stutzeri OX1. Appl Environ Microbiol 62:3704–3711
    [Google Scholar]
  14. Buswell J. A. 1975; Metabolism of phenol and cresols by Bacillus stearothermophilus. J Bacteriol 124:1077–1083
    [Google Scholar]
  15. Cadieux E., Vrajmasu V., Achim C., Powlowski J., Münck E. 2002; Biochemical, Mössbauer, and EPR studies of the diiron cluster of phenol hydroxylase from Pseudomonas sp. strain CF 600. Biochemistry 41:10680–10691
    [Google Scholar]
  16. Cerdan P., Wasserfallen A., Rekik M., Timmis K. N., Harayama S. 1994; Substrate specificity of catechol 2,3-dioxygenase encoded by TOL plasmid pWW0 of Pseudomonas putida and its relationship to cell growth. J Bacteriol 176:6074–6081
    [Google Scholar]
  17. Cho M. C., Kang D.-O., Yoon B. D., Lee K. 2000; Toluene degradation pathway from Pseudomonas putida F1: substrate specificity and gene induction by 1-substituted benzenes. J Ind Microbiol Biotechnol 25:163–170
    [Google Scholar]
  18. Choi E. N., Cho M. C., Kim Y., Kim C. K., Lee K. 2003; Expansion of growth substrate range in Pseudomonas putida F1 by mutations in both cymR and todS, which recruit a ring-fission hydrolase CmtE and induce the tod catabolic operon, respectively. Microbiology 149:795–805
    [Google Scholar]
  19. de Lorenzo V., Herrero M., Metzke M., Timmis K. N. 1991; An upstream XylR- and IHF-induced nucleoprotein complex regulates the sigma 54-dependent Pu promoter of TOL plasmid. EMBO J 10:1159–1167
    [Google Scholar]
  20. Duggleby C. J., Williams P. A. 1986; Purification and some properties of the 2-hydroxy-6-oxohepta-2,4-dienoate hydrolase (2-hydroxymuconic semialdehyde hydrolase) encoded by the TOL plasmid pWW0 from Pseudomonas putida mt-2. J Gen Microbiol 132:717–726
    [Google Scholar]
  21. Dunn N. W., Gunsalus I. C. 1973; Transmissible plasmid coding early enzymes of naphthalene oxidation in Pseudomonas putida. J Bacteriol 114:974–979
    [Google Scholar]
  22. Ehrt S., Schirmer F., Hillen W. 1995; Genetic organization, nucleotide sequence and regulation of expression of genes encoding phenol hydroxylase and catechol 1,2-dioxygenase in Acinetobacter calcoaceticus NCIB8250. Mol Microbiol 18:13–20
    [Google Scholar]
  23. Elango N., Radhakrishnan R., Froland W. A., Wallar B. J., Earhart C. A., Lipscomb J. D., Ohlendorf D. H. 1997; Crystal structure of the hydroxylase component of methane monooxygenase from Methylosinus trichosporium OB3b. Protein Sci 6:556–568
    [Google Scholar]
  24. Eltis L. D., Bolin J. T. 1996; Evolutionary relationships among extradiol dioxygenases. J Bacteriol 178:5930–5937
    [Google Scholar]
  25. Ensley B. D., Ratzkin B. J., Osslund T. D., Simon M. J., Wackett L. P., Gibson D. T. 1983; Expression of naphthalene oxidation genes in Escherichia coli results in the biosynthesis of indigo. Science 222:167–169
    [Google Scholar]
  26. Ferguson P. L., Iden C. R., Brownawell B. J. 2001; Distribution and fate of neutral alkylphenol ethoxylate metabolites in a sewage-impacted urban estuary. Environ Sci Technol 35:2428–2435
    [Google Scholar]
  27. Ferrara F., Fabietti F., Delise M., Bocca A. P., Funari E. 2001; Alkylphenolic compounds in edible molluscs of the Adriatic Sea (Italy). Environ Sci Technol 35:3109–3112
    [Google Scholar]
  28. Figurski D. H., Helinski D. R. 1979; Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci U S A 76:1648–1652
    [Google Scholar]
  29. Fox B. G., Shanklin J., Somerville C., Münck E. 1993; Stearoyl-acyl carrier protein Δ9 desaturase from Ricinus communis is a diiron-oxo protein. Proc Natl Acad Sci U S A 90:2486–2490
    [Google Scholar]
  30. Friedman D. I. 1988; Integration host factor: a protein for all reasons. Cell 55:545–554
    [Google Scholar]
  31. Fujii K., Urano N., Ushio H., Satomi M., Iida H., Ushio-Sata N., Kimura S. 2000; Profile of a nonylphenol-degrading microflora and its potential for bioremedial applications. J Biochem 128:909–916
    [Google Scholar]
  32. Giger W., Brunner P. H., Schaffner C. 1984; 4-Nonylphenol in sewage sludge: accumulation of toxic metabolites from nonionic surfactants. Science 225:623–625
    [Google Scholar]
  33. Harayama S., Mermod N., Rekik M., Lehrbach P. R., Timmis K. N. 1987; Roles of the divergent branches of the meta-cleavage pathway in the degradation of benzoate and substituted benzoates. J Bacteriol 169:558–564
    [Google Scholar]
  34. Herrmann H., Muller C., Schmidt I., Mahnke J., Petruschka L., Hahnke K. 1995; Localization and organization of phenol degradation genes of Pseudomonas putida strain H. Mol Gen Genet 247:240–246
    [Google Scholar]
  35. Hino S., Watanabe K., Takahashi N. 1998; Phenol hydroxylase cloned from Ralstonia eutropha strain E2 exhibits novel kinetic properties. Microbiology 144:1765–1772
    [Google Scholar]
  36. Hughes E. J., Bayly R. C., Skurray R. A. 1984; Evidence for isofunctional enzymes in the degradation of phenol, m- and p-toluate, and p-cresol via catechol meta-cleavage pathways in Alcaligenes eutrophus. J Bacteriol 158:79–83
    [Google Scholar]
  37. Hugo N., Armengaud J., Gaillard J., Timmis K. N., Jouanneau Y. 1998; A novel [2Fe-2S] ferredoxin from Pseudomonas putida mt2 promotes the reductive reactivation of catechol 2,3-dioxygenase. J Biol Chem 273:9622–9629
    [Google Scholar]
  38. Inouye S., Nakazawa A., Nakazawa T. 1988; Nucleotide sequence of the regulatory gene xylR of the TOL plasmid from Pseudomonas putida. Gene 66:301–306
    [Google Scholar]
  39. Johnson J. L. 1994; Similarity analyses of rRNAs. In Methods for General and Molecular Bacteriology pp  683–700 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  40. Johnson G. R., Olsen R. H. 1997; Multiple pathways for toluene degradation in Burkholderia sp. strain JS150. Appl Environ Microbiol 63:4047–4052
    [Google Scholar]
  41. Keith T. L., Snyder S. A., Naylor C. G., Staples C. A., Summer C., Kannan K., Giesy J. P. 2001; Identification and quantitation of nonylphenol ethoxylates and nonylphenol in fish tissues from Michigan. Environ Sci Technol 35:10–13
    [Google Scholar]
  42. Kim J., Fuller J. H., Cecchini G., McIntire W. S. 1994; Cloning, sequencing, and expression of the structural genes for the cytochrome and flavoprotein subunits of p-cresol methylhydroxylase from two strains of Pseudomonas putida. J Bacteriol 176:6349–6361
    [Google Scholar]
  43. Klecka G. M., Gibson D. T. 1981; Inhibition of catechol 2,3-dioxygenase from Pseudomonas putida by 3-chlorocatechol. Appl Environ Microbiol 41:1159–1165
    [Google Scholar]
  44. Kovach M. E., Elzer P. H., Hill D. S., Robertson G. T., Farris M. A., Roop R. M. 2nd, Peterson K. M. 1995; Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175–176
    [Google Scholar]
  45. Kukor J. J., Olsen R. H. 1992; Complete nucleotide sequence of tbuD, the gene encoding phenol/cresol hydroxylase from Pseudomonas pickettii PKO1, and functional analysis of the encoded enzyme. J Bacteriol 174:6518–6526
    [Google Scholar]
  46. Lee K., Resnick S. M., Gibson D. T. 1997; Stereospecific oxidation of ( R)- and ( S)-1-indanol by naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816-4. Appl Environ Microbiol 63:2067–2070
    [Google Scholar]
  47. Miller W. G., Leveau J. H., Lindow S. E. 2000; Improved gfp and inaZ broad-host-range promoter-probe vectors. Mol Plant Microbe Interact 13:1243–1250
    [Google Scholar]
  48. Murray K., Sala-Trepat J. M., Williams P. A. 1972; The divergent meta-cleavage pathway for the metabolism of benzoate, 3-methylbenzoate and 4-methylbenzoate by Pseudomonas arvilla mt-2. Biochem J 128:89P–90P
    [Google Scholar]
  49. Nakamura K., Ishida H., Iizumi T. 2000; Constitutive trichloroethylene degradation led by tac promoter chromosomally integrated upstream of phenol hydroxylase genes of Ralstonia sp. KN1 and its nucleotide sequence analysis. J Biosci Bioeng 89:47–54
    [Google Scholar]
  50. Ng L. C., Shingler V., Sze C. C., Poh C. L. 1994; Cloning and sequences of the first eight genes of the chromosomally encoded (methyl) phenol degradation pathway from Pseudomonas putida P35X. Gene 151:29–36
    [Google Scholar]
  51. Ng L. C., Poh C. L., Shingler V. 1995; Aromatic effector activation of the NtrC-like transcriptional regulator PhhR limits the catabolic potential of the (methyl)phenol degradative pathway it controls. J Bacteriol 177:1485–1490
    [Google Scholar]
  52. Nordlund I., Powlowski J., Shingler V. 1990; Complete nucleotide sequence and polypeptide analysis of multicomponent phenol hydroxylase from Pseudomonas sp. strain CF600. J Bacteriol 172:6826–6833
    [Google Scholar]
  53. Nozaki M., Kotani S., Ono K., Seno S. 1970; Metapyrocatechase. III. Substrate specificity and mode of ring fission. Biochim Biophys Acta 220:213–223
    [Google Scholar]
  54. Polissi A., Harayama S. 1993; In vivo reactivation of catechol 2,3-dioxygenase mediated by a chloroplast-type ferredoxin: a bacterial strategy to expand the substrate specificity of aromatic degradative pathways. EMBO J 12:3339–3347
    [Google Scholar]
  55. Powlowski J., Shingler V. 1990; In vitro analysis of polypeptide requirements of multicomponent phenol hydroxylase from Pseudomonas sp. strain CF600. J Bacteriol 172:6834–6840
    [Google Scholar]
  56. Powlowski J., Shingler V. 1994; Genetics and biochemistry of phenol degradation by Pseudomonas sp. CF600. Biodegradation 5:219–236
    [Google Scholar]
  57. Ramos J. L., Wasserfallen A., Rose K., Timmis K. N. 1987; Redesigning metabolic routes: manipulation of TOL plasmid pathway for catabolism of alkylbenzoates. Science 235:593–596
    [Google Scholar]
  58. Reeve C. D., Carver M. A., Hopper D. J. 1989; The purification and characterization of 4-ethylphenol methylenehydroxylase, a flavocytochrome from Pseudomonas putida JD1. Biochem J 263:431–437
    [Google Scholar]
  59. Rosenzweig A. C., Brandstetter H., Whittington D. A., Nordlund P., Lippard S. J., Frederick C. A. 1997; Crystal structures of the methane monooxygenase hydroxylase from Methylococcus capsulatus (Bath): implications for substrate gating and component interactions. Proteins 29:141–152
    [Google Scholar]
  60. Saint C. P., Venables W. A. 1990; Loss of Tdn catabolic genes by deletion from and curing of plasmid pTDN1 in Pseudomonas putida: rate and mode of loss are substrate and pH dependent. J Gen Microbiol 136:627–636
    [Google Scholar]
  61. Sala-Trepat J. M., Murray K., Williams P. A. 1972; The metabolic divergence in the meta cleavage of catechols by Pseudomonas putida NCIB 10015. Physiological significance and evolutionary implications. Eur J Biochem 28:347–356
    [Google Scholar]
  62. Sambrook J., Russell D. W. 2001 Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  63. Sarand I., Skarfstad E., Forsman M., Romantschuk M., Shingler V. 2001; Role of the DmpR-mediated regulatory circuit in bacterial biodegradation properties in methylphenol-amended soils. Appl Environ Microbiol 67:162–171
    [Google Scholar]
  64. Schirmer F., Ehrt S., Hillen W. 1997; Expression, inducer spectrum, domain structure, and function of MopR, the regulator of phenol degradation in Acinetobacter calcoaceticus NCIB8250. J Bacteriol 179:1329–1336
    [Google Scholar]
  65. Seah S. Y., Terracina G., Bolin J. T., Riebel P., Snieckus V., Eltis L. D. 1998; Purification and preliminary characterization of a serine hydrolase involved in the microbial degradation of polychlorinated biphenyls. J Biol Chem 273:22943–22949
    [Google Scholar]
  66. Sharpe R. M., Fisher J. S., Millar M. M., Jobling S., Sumpter J. P. 1995; Gestational and lactational exposure of rats to xenoestrogens results in reduced testicular size and sperm production. Environ Health Perspect 103:1136–1143
    [Google Scholar]
  67. Shingler V. 1996; Metabolic and regulatory check points in phenol degradation by Pseudomonas sp. strain CF600. In Pseudomonas: Molecular Biology and Biotechnology pp  153–164 Edited by Nakazawa T. Washington, DC: American Society for Microbioloy;
    [Google Scholar]
  68. Shingler V., Moore T. 1994; Sensing of aromatic compounds by the DmpR transcriptional activator of phenol-catabolizing Pseudomonas sp. strain CF600. J Bacteriol 176:1555–1560
    [Google Scholar]
  69. Shingler V., Franklin F. C., Tsuda M., Holroyd D., Bagdasarian M. 1989; Molecular analysis of a plasmid-encoded phenol hydroxylase from Pseudomonas CF600. J Gen Microbiol 135:1083–1092
    [Google Scholar]
  70. Shingler V., Powlowski J., Marklund U. 1992; Nucleotide sequence and functional analysis of the complete phenol/3, 4- dimethylphenol catabolic pathway of Pseudomonas sp. strain CF600. J Bacteriol 174:711–724
    [Google Scholar]
  71. Shingler V., Bartilson M., Moore T. 1993; Cloning and nucleotide sequence of the gene encoding the positive regulator (DmpR) of the phenol catabolic pathway encoded by pVI150 and identification of DmpR as a member of the NtrC family of transcriptional activators. J Bacteriol 175:1596–1604
    [Google Scholar]
  72. Soares A., Guieysse B., Delgado O., Mattiasson B. 2003; Aerobic biodegradation of nonylphenol by cold-adapted bacteria. Biotechnol Lett 25:731–738
    [Google Scholar]
  73. Stanier R. Y., Palleroni N. J., Doudoroff M. 1966; The aerobic pseudomonads: a taxomonic study. J Gen Microbiol 43:159–271
    [Google Scholar]
  74. Staskawicz B., Dahlbeck D., Keen N., Napoli C. 1987; Molecular characterization of cloned avirulence genes from race 0 and race 1 of Pseudomonas syringae pv. glycinea. J Bacteriol 169:5789–5794
    [Google Scholar]
  75. Sze C. C., Laurie A. D., Shingler V. 2001; In vivo and in vitro effects of integration host factor at the DmpR-regulated σ54-dependent Po promoter. J Bacteriol 183:2842–2851
    [Google Scholar]
  76. Tanaka J. N., Grizzle J. M. 2002; Effects of nonylphenol on the gonadal differentiation of the hermaphroditic fish, Rivulus marmoratus. Aquat Toxicol 57:117–125
    [Google Scholar]
  77. Tanghe T., Dhooge W., Verstraete W. 1999; Isolation of a bacterial strain able to degrade branched nonylphenol. Appl Environ Microbiol 65:746–751
    [Google Scholar]
  78. Tanghe T., Dhooge W., Verstraete W. 2000; Formation of the metabolic intermediate 2, 4, 4-trimethyl-2-pentanol during incubation of a Sphingomonas sp. strain with the xeno-estrogenic octylphenol. Biodegradation 11:11–19
    [Google Scholar]
  79. Teramoto M., Futamata H., Harayama S., Watanabe K. 1999; Characterization of a high-affinity phenol hydroxylase from Comamonas testosteroni R5 by gene cloning, and expression in Pseudomonas aeruginosa PAO1c. Mol Gen Genet 262:552–558
    [Google Scholar]
  80. Thony B., Hennecke H. 1989; The −24/−12 promoter comes of age. FEMS Microbiol Rev 5:341–357
    [Google Scholar]
  81. Wigmore G. J., Bayly R. C., Di Berardino D. 1974; Pseudomonas putida mutants defective in the metabolism of the products of meta fission of catechol and its methyl analogues. J Bacteriol 120:31–37
    [Google Scholar]
  82. Xu Y., Chen M., Zhang W., Lin M. 2003; Genetic organization of genes encoding phenol hydroxylase, benzoate 1,2-dioxygenase alpha subunit and its regulatory proteins in Acinetobacter calcoaceticus PHEA-2. Curr Microbiol 46:235–240
    [Google Scholar]
  83. Zylstra G. J., Gibson D. T. 1991; Aromatic hydrocarbon degradation: a molecular approach. Genet Eng 13:183–203
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26628-0
Loading
/content/journal/micro/10.1099/mic.0.26628-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error