The genes encoding the periplasmic nitrate reductase are essential for nitrate respiration Free

Abstract

The gene cluster that encodes the periplasmic nitrate reductase from USDA110 has been isolated and characterized. encodes the catalytic subunit, and the and gene products are predicted to be a soluble dihaem and a membrane-anchored tetrahaem -type cytochrome, respectively. encodes a transmembrane protein of unknown function, and the gene product is a soluble protein which is assumed to play a role in the maturation of NapA. Western blots of the periplasmic fraction from wild-type cells grown anaerobically with nitrate revealed the presence of a protein band with a molecular size of about 90 kDa corresponding to NapA. A mutant carrying an insertion in the gene was unable to grow under nitrate-respiring conditions, lacked nitrate reductase activity, and did not show the 90 kDa protein band. Complementation of the mutant with a plasmid bearing the genes restored both nitrate-dependent anaerobic growth of the cells and nitrate reductase activity. A membrane-bound and a periplasmic -type cytochrome, with molecular masses of 25 kDa and 15 kDa, respectively, were not detected in the mutant strain incubated anaerobically with nitrate, which identifies those proteins as the NapC and the NapB components of the periplasmic nitrate reductase enzyme. These results suggest that the periplasmic nitrate reductase is the enzyme responsible for anaerobic growth of under nitrate-respiring conditions. The promoter region of the genes has been characterized by primer extension. A major transcript initiates 66·5 bp downstream of the centre of a putative FNR-like binding site.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26620-0
2003-12-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/12/mic1493395.html?itemId=/content/journal/micro/10.1099/mic.0.26620-0&mimeType=html&fmt=ahah

References

  1. Becker B. U., Kosch K., Parniske M., Müller P. 1998; Exopolysaccharide (EPS) synthesis in Bradyrhizobium japonicum : sequence, operon structure and mutational analysis of an exo gene cluster. Mol Gen Genet 259:161–171
    [Google Scholar]
  2. Bedzyk L., Wang T., Ye R. W. 1999; The periplasmic nitrate reductase in Pseudomonas sp. strain G-179 catalyzes the first step of denitrification. J Bacteriol 181:2802–2806
    [Google Scholar]
  3. Bell L. C., Richardson D. J., Fergurson S. J. 1990; Periplasmic and membrane-bound respiratory nitrate reductase in Thiosphera pantotropha . FEBS Lett 265:85–87
    [Google Scholar]
  4. Berks B. C., Richardson D. J., Reilly A., Willis A. C., Ferguson S. J. 1995; The napEDABC gene cluster encoding the periplasmic nitrate reductase system of Thiosphaera pantotropha . Biochem J 309:983–992
    [Google Scholar]
  5. Berks B. C., Sargent F., Palmer T. 2000; The Tat protein export pathway. Mol Microbiol 35:260–274
    [Google Scholar]
  6. Bott M., Ritz D., Hennecke H. 1991; The Bradyrhizobium japonicum cycM gene encodes a membrane-anchored homolog of mitochondrial cytochrome c . J Bacteriol 173:6766–6772
    [Google Scholar]
  7. Bott M., Thöny-Meyer L., Loferer H., Rossbach S., Tully R. E., Keister D., Appleby C. A., Hennecke H. 1995; Bradyrhizobium japonicum cytochrome c 550 is required for nitrate respiration but not for symbiotic nitrogen fixation. J Bacteriol 177:2214–2217
    [Google Scholar]
  8. Brondijk T. H. C., Fiegen D., Richardson D. J., Cole J. A. 2002; Roles of NapF, NapG and NapH, subunits of the Escherichia coli periplasmic nitrate reductase, in ubiquinol oxidation. Mol Microbiol 44:245–255
    [Google Scholar]
  9. Darwin A. J., Ziegelgoffer E. C., Kiley P. J., Stewart V. 1998; FNR, NarP and NarL regulation of Escherichia coli K-12 napF (periplasmic nitrate reductase) operon transcription in vitro . J Bacteriol 180:4192–4198
    [Google Scholar]
  10. Ellington M. J. K., Bhakoo K. K., Sawers G., Richardson D. J., Ferguson S. J. 2002; Hierarchy of carbon source selection in Paracoccus pantotrophus : strict correlation between reduction state of the carbon substrate and aerobic expression of the nap operon. J Bacteriol 184:4767–4774
    [Google Scholar]
  11. Fischer H. M. 1994; Genetic regulation of nitrogen fixation in rhizobia. Microbiol Rev 58:352–386
    [Google Scholar]
  12. Fischer H. M., Velasco L., Delgado M. J., Bedmar E. J., Schären S., Zingg D., Göttfert M., Hennecke H. 2001; One of two hemN genes in Bradyrhizobium japonicum is functional during anaerobic growth and in symbiosis. J Bacteriol 183:1300–1311
    [Google Scholar]
  13. Galibert F., Finan T. M., Long S. R. 53 other authors 2001; The composite genome of the legume symbiont Sinorhizobium meliloti . Science 298:668–672
    [Google Scholar]
  14. Gavira M., Roldan M. D., Castillo F., Moreno-Vivián C. 2002; Regulation of nap gene expression and periplasmic nitrate reductase activity in the phototrophic bacterium Rhodobacter sphaeroides DSM158. J Bacteriol 184:1693–1702
    [Google Scholar]
  15. Kaneko T., Nakamura Y., Sato S. 14 other authors 2002; Complete genome structure of the nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA 110. DNA Res 9:189–197
    [Google Scholar]
  16. Liu H. P., Takio S., Satoh T., Yamamoto I. 1999; Involvement in denitrification of the napKEFDABC genes encoding the periplasmic nitrate reductase system in the denitrifying phototrophic bacterium Rhodobacter sphaeroides f.sp. denitrificans . Biosci Biotechnol Biochem 63:530–536
    [Google Scholar]
  17. McEwan A. G., Jackson J. B., Ferguson S. J. 1984; Rationalization of properties of nitrate reductases in Rhodopseudomonas capsulata . Arch Microbiol 137:344–349
    [Google Scholar]
  18. Mesa S., Göttfert M., Bedmar E. J. 2001; The nir, nor , and nos denitrification genes are dispersed over the Bradyrhizobium japonicum chromosome. Arch Microbiol 176:136–142
    [Google Scholar]
  19. Mesa S., Velasco L., Manzanera M. E., Delgado M. J., Bedmar E. J. 2002; Characterization and regulation of the nitric oxide reductase-encoding region of Bradyrhizobium japonicum . Microbiology 148:3553–3560
    [Google Scholar]
  20. Mesa S., Bedmar E. J., Chanfon A., Hennecke H., Fischer H. M. 2003; Bradyrhizobium japonicum NnrR, a denitrification regulator, expands the FixLJ-FixK2 regulatory cascade. J Bacteriol 185:3978–3982
    [Google Scholar]
  21. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  22. Moreno-Vivián C., Ferguson S. J. 1998; Definition and distinction between assimilatory, dissimilatory and respiratory pathways. Mol Microbiol 29:664–666
    [Google Scholar]
  23. Moreno-Vivián C., Cabello P., Martinez-Luque M., Blasco R., Castillo F. 1999; Prokaryotic nitrate reduction: molecular properties and functional distinction among bacterial nitrate reductases. J Bacteriol 181:6573–6584
    [Google Scholar]
  24. Nellen-Anthamatten D., Rossi P., Preisig O., Kullik I., Babst M., Fischer H. M., Hennecke H. 1998; Bradyrhizobium japonicum FixK2, a crucial distributor in the FixLJ-dependent regulatory cascade for control of genes inducible by low oxygen levels. J Bacteriol 180:5251–5255
    [Google Scholar]
  25. Nicholas D. J. D., Nason A. 1957; Determination of nitrate and nitrite. Methods Enzymol 3:981–984
    [Google Scholar]
  26. Nienaber A., Huber A., Göttfert M., Hennecke H., Fischer H. M. 2000; Three new NifA-regulated genes in the Bradyrhizobium japonicum symbiotic gene region discovered by competitive DNA-RNA hybridization. J Bacteriol 182:1472–1480
    [Google Scholar]
  27. Potter L. C., Cole J. A. 1999; Essential roles for the products of the napABCD genes, but not napFGH , in periplasmic nitrate reduction by Escherichia coli K-12. Biochem J 344:69–76
    [Google Scholar]
  28. Potter L., Angove H., Richardson D., Cole J. 2001; Nitrate reduction in the periplasm of Gram-negative bacteria. Adv Microb Physiol 45:51–112
    [Google Scholar]
  29. Preisig O., Anthamatten D., Hennecke H. 1993; Genes for a microaerobically induced oxidase complex in Bradyrhizobium japonicum are essential for a nitrogen-fixing endosymbiosis. Proc Natl Acad Sci U S A 90:3309–3313
    [Google Scholar]
  30. Preisig O., Zufferey R., Thöny-Meyer L., Appleby C. A., Hennecke H. 1996; A high-affinity cbb 3-type cytochrome oxidase terminates the symbiosis-specific respiratory chain of Bradyrhizobium japonicum . J Bacteriol 178:1532–1538
    [Google Scholar]
  31. Prentki P., Krisch H. M. 1984; In vitro insertional mutagenesis with a selectable DNA fragment. Gene 29:303–313
    [Google Scholar]
  32. Pugsley A. P. 1993; The complete general secretory pathway in gram-negative bacteria. Microbiol Rev 57:50–108
    [Google Scholar]
  33. Quandt J., Hynes M. F. 1993; Versatile suicide vectors which allow direct selection for gene replacement in Gram-negative bacteria. Gene 127:15–21
    [Google Scholar]
  34. Regensburger B., Hennecke H. 1983; RNA polymerase from Rhizobium japonicum . Arch Microbiol 135:103–109
    [Google Scholar]
  35. Reyes F., Roldan M. D., Klipp W., Castillo F., Moreno-Vivián C. 1996; Isolation of periplasmic nitrate reductase genes from Rhodobacter sphaeroides DSM 158: structural and functional differences among prokaryotic nitrate reductases. Mol Microbiol 19:1307–1318
    [Google Scholar]
  36. Reyes F., Gavira M., Castillo F., Moreno-Vivián C. 1998; Periplasmic nitrate-reducing system of the phototrophic bacterium Rhodobacter sphaeroides DSM 158: transcriptional and mutational analysis of the napKEFDABC gene cluster. Biochem J 331:897–904
    [Google Scholar]
  37. Richardson D. J. 2000; Bacterial respiration: a flexible process for a changing environment. Microbiology 146:551–571
    [Google Scholar]
  38. Richardson D. J., Watmough N. J. 1999; Inorganic nitrogen metabolism in bacteria. Curr Opin Chem Biol 3:207–219
    [Google Scholar]
  39. Richardson D. J., Wehrfritz J. M., Keech A. 10 other authors 1998; The diversity of redox proteins involved in bacterial heterotrophic nitrification and aerobic denitrification. Biochem Soc Trans 26:401–408
    [Google Scholar]
  40. Richardson D. J., Berks B. C., Russell D. A., Spiro S., Taylor C. J. 2001; Functional, biochemical and genetic diversity of prokaryotic nitrate reductases. Cell Mol Life Sci 58:165–178
    [Google Scholar]
  41. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor; New York: Cold Spring Harbor Laboratory;
  42. Schäfer A., Tauch A., Jäger W., Kalinowski J., Thierbach G., Pühler A. 1994; Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum . Gene 145:69–73
    [Google Scholar]
  43. Sears H. J., Sawers G., Berks B. C., Ferguson S. J., Richardson D. J. 2000; Control of periplasmic nitrate reductase gene expression ( napEDABC ) from Paracoccus pantotrophus in response to oxygen and carbon substrates. Microbiology 146:2977–2985
    [Google Scholar]
  44. Siddiqui R. A., Warnecke-Eberz U., Hengsberger A., Schneider B., Kostka S., Friedrich B. 1993; Structure and function of a periplasmic nitrate reductase in Alcaligenes eutrophus H16. J Bacteriol 175:5867–5876
    [Google Scholar]
  45. Simon R., Priefer U., Pühler A. 1983; Vector plasmids for in vivo and in vitro manipulation of Gram-negative bacteria. In Molecular Genetics of the Bacteria–Plant Interaction pp 98–106 Edited by Pühler A. Heidelberg: Springer;
    [Google Scholar]
  46. Spiro S. 1994; The FNR family of transcriptional regulators. Antonie Van Leeuwenhoek 66:23–36
    [Google Scholar]
  47. Steenhoudt O., Keijers V., Okon Y., Vanderleyden J. 2001; Identification and characterization of a periplasmic nitrate reductase in Azospirillum brasilense Sp245. Arch Microbiol 175:344–352
    [Google Scholar]
  48. Stewart V., Lu Y., Darwin A. J. 2002; Periplasmic nitrate reductase (NapABC enzyme) supports anaerobic respiration by Escherichia coli K-12. J Bacteriol 184:1314–1323
    [Google Scholar]
  49. Stover C. K., Pham X. Q., Erwin A. L. 28 other authors 2000; Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406:959–964
    [Google Scholar]
  50. Thöny-Meyer L., Stax D., Hennecke H. 1989; An unusual gene cluster for the cytochrome bc 1 complex in Bradyrhizobium japonicum and its requirement for effective root nodule symbiosis. Cell 57:683–697
    [Google Scholar]
  51. Vairinhos F., Wallace W., Nicholas D. J. D. 1989; Simultaneous assimilation and denitrification of nitrate by Bradyrhizobium japonicum . J Gen Microbiol 135:189–193
    [Google Scholar]
  52. Vargas C., McEwan A. G., Downie J. A. 1993; Detection of c -type cytochromes using enhanced chemiluminiscence. Anal Biochem 209:323–326
    [Google Scholar]
  53. Velasco L., Mesa S., Delgado M. J., Bedmar E. J. 2001; Characterization of the nirK gene encoding the respiratory, Cu-containing nitrite reductase of Bradyrhizobium japonicum . Biochim Biophys Acta 1521130–134
    [Google Scholar]
  54. Vincent J. M. 1974; Root-nodule symbioses with Rhizobium . In the Biology of Nitrogen Fixation pp 265–341 Edited by Quispel A. New York, NY: American Elsevier Publishing Co;
    [Google Scholar]
  55. Wang H., Tseng C.-P., Gunsalus R. P. 1999; The napF and narG nitrate reductase operons in Escherichia coli are differentially expressed in response to submicromolar concentrations of nitrate but not nitrite. J Bacteriol 181:5303–5308
    [Google Scholar]
  56. Warnecke-Eberz U., Friedrich B. 1993; Three nitrate reductase activities in Alcaligenes eutrophus . Arch Microbiol 159:405–409
    [Google Scholar]
  57. Wing H. J., Williams S. M., Busby S. J. W. 1995; Spacing requirements for transcription activation by Escherichia coli FNR protein. J Bacteriol 177:6704–6710
    [Google Scholar]
  58. Zumft W. G. 1997; Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 61:533–616
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26620-0
Loading
/content/journal/micro/10.1099/mic.0.26620-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed