1887

Abstract

Active containment systems based on the controlled expression of a lethal gene are designed to increase containment of recombinant micro-organisms used for environmental applications. A major drawback in containment is the existence of mutations that generate surviving cells that cease to respond to the toxic effect of the lethal function. In this work the authors have developed for the first time a strategy to reduce the problem of mutations and increase the efficiency of containment based on the combination of two lethal functions acting on different cellular targets of major concern in containment, DNA and RNA, and whose expression is under control of different regulatory signals. To engineer the dual gene containment circuit, two toxin–antitoxin pairs, i.e. the colicin E3–immunity E3 and the RI restriction–modification systems, were combined. The genes encoding the immunity E3 and the RI methyltransferase proteins (antitoxins) were stably inserted into the chromosome of the host cell, whereas the broad-host-range lethal genes encoding the colicin E3 RNase and the RI restriction endonuclease (toxins) were flanking the contained trait in a plasmid. This dual lethal cassette decreased gene transfer frequencies, through killing of the recipient cells, by eight orders of magnitude, which provides experimental evidence that the anticipated containment level due to the combination of single containment systems is generally achieved. Survivors that escaped killing were analysed and the mutational events involved were characterized.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26618-0
2003-12-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/12/mic1493595.html?itemId=/content/journal/micro/10.1099/mic.0.26618-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef]
    [Google Scholar]
  2. Bej, A. K., Perlin, M. H. & Atlas, R. M. ( 1988; ). Model suicide vector for containment of genetically engineered microorganisms. Appl Environ Microbiol 54, 2472–2477.
    [Google Scholar]
  3. Bradford, M. M. ( 1976; ). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248–254.[CrossRef]
    [Google Scholar]
  4. Brosius, J., Cate, R. L. & Perlmutter, A. P. ( 1982; ). Precise location of the two promoters for the β-lactamase gene of pBR322. S1 mapping of ribonucleic acid isolated from Escherichia coli or synthesized in vitro. J Biol Chem 257, 9205–9210.
    [Google Scholar]
  5. Davison, J. ( 2002; ). Towards safer vectors for the field release of recombinant bacteria. Environ Biosafety Res 1, 9–18.[CrossRef]
    [Google Scholar]
  6. de Lorenzo, V. & Timmis, K. N. ( 1994; ). Analysis and construction of stable phenotypes in Gram-negative bacteria with Tn5 and Tn10-derived mini-transposons. Methods Enzymol 235, 386–405.
    [Google Scholar]
  7. Díaz, E., Munthali, M., de Lorenzo, V. & Timmis, K. N. ( 1994; ). Universal barrier to lateral spread of specific genes among microorganisms. Mol Microbiol 13, 855–861.[CrossRef]
    [Google Scholar]
  8. Díaz, E., Chithila-Munthali, M. T., Jaenecke, S., de Lorenzo, V. & Timmis, K. N. ( 1999; ). Design of genetic circuits for restricting gene and biocatalyst dispersal. In Molecular Microbial Ecology Manual, pp. 1–18, unit 6.1.14. Edited by A. D. L. Akkermans, J. D. van Elsas & F. J. de Bruijn. Dordrecht: Kluwer.
  9. Jensen, L. B., Ramos, J. L., Kaneva, Z. & Molin, S. ( 1993; ). A substrate-dependent biological containment system for Pseudomonas putida based on the Escherichia coli gef gene. Appl Environ Microbiol 59, 3713–3717.
    [Google Scholar]
  10. Knudsen, S. & Karlström, O. H. ( 1991; ). Development of efficient suicide mechanisms for biological containment of bacteria. Appl Environ Microbiol 57, 85–92.
    [Google Scholar]
  11. Knudsen, S., Saadbye, P., Hansen, L. H., Collier, A., Jacobsen, B. L., Schlundt, J. & Karlström, O. H. ( 1995; ). Development and testing of improved suicide functions for biological containment of bacteria. Appl Environ Microbiol 61, 985–991.
    [Google Scholar]
  12. Mahillon, J. & Chandler, M. ( 1998; ). Insertion sequences. Microbiol Mol Biol Rev 62, 725–774.
    [Google Scholar]
  13. Masaki, H. & Ohta, T. ( 1985; ). Colicin E3 and its immunity genes. J Mol Biol 182, 217–227.[CrossRef]
    [Google Scholar]
  14. Molin, S., Boe, L., Jensen, L. B., Kristensen, C. S., Givskov, M., Ramos, J. L. & Bej, A. K. ( 1993; ). Suicidal genetic elements and their use in biological containment of bacteria. Annu Rev Microbiol 47, 139–166.[CrossRef]
    [Google Scholar]
  15. Munthali, M. T., Timmis, K. N. & Díaz, E. ( 1996a; ). Use of colicin E3 for biological containment of microorganisms. Appl Environ Microbiol 62, 1805–1807.
    [Google Scholar]
  16. Munthali, M. T., Timmis, K. N. & Díaz, E. ( 1996b; ). Restricting the dispersal of recombinant DNA: design of a contained biological catalyst. Bio/Technology 14, 189–191.[CrossRef]
    [Google Scholar]
  17. O'Connor, C. D. & Humphreys, G. O. ( 1982; ). Expression of the EcoRI restriction-modification system and the construction of positive-selection cloning vectors. Gene 20, 219–229.[CrossRef]
    [Google Scholar]
  18. Pérez-Martín, J. & de Lorenzo, V. ( 1996; ). VTR expression cassettes for engineering conditional phenotypes in Pseudomonas: activity of the Pu promoter of the TOL plasmid under limiting concentrations of the XylR activator protein. Gene 172, 81–86.[CrossRef]
    [Google Scholar]
  19. Pingoud, A. & Jeltsch, A. ( 1997; ). Recognition and cleavage of DNA by type-II restriction endonucleases. Eur J Biochem 246, 1–22.[CrossRef]
    [Google Scholar]
  20. Ramos, J. L., Andersson, P., Jensen, L. B., Ramos, C., Ronchel, M. C., Díaz, E., Timmis, K. N. & Molin, S. ( 1995; ). Suicide microbes on the loose. Bio/Technology 13, 35–37.[CrossRef]
    [Google Scholar]
  21. Richards, E. ( 1987; ). Preparation of genomic DNA from bacteria. Miniprep of bacterial genomic DNA. In Current Protocols in Molecular Biology, pp. 1–2, unit 2.4.1. Edited by F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith & K. Struhl. New York: Wiley.
  22. Ronchel, M. C. & Ramos, J. L. ( 2001; ). Dual system to reinforce biological containment of recombinant bacteria designed for rhizoremediation. Appl Environ Microbiol 67, 2649–2656.[CrossRef]
    [Google Scholar]
  23. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  24. Sanger, F., Nicklen, S. & Coulson, A. R. ( 1977; ). DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74, 5463–5467.[CrossRef]
    [Google Scholar]
  25. Szafranski, P., Mello, C. M., Sano, T., Smith, C. L., Kaplan, D. L. & Cantor, C. R. ( 1997; ). A new approach for containment of microorganisms: dual control of streptavidin expression by antisense RNA and the T7 transcription system. Proc Natl Acad Sci USA 94, 1059–1063.[CrossRef]
    [Google Scholar]
  26. Takagaki, Y., Kunugita, K. & Matsuhashi, M. ( 1973; ). Evidence for the direct action of colicin K on aerobic 32Pi uptake in Escherichia coli in vivo and in vitro. J Bacteriol 113, 42–50.
    [Google Scholar]
  27. Torres, B., Jaenecke, S., Timmis, K. N., García, J. L. & Díaz, E. ( 2000; ). A gene containment strategy based on a restriction-modification system. Environ Microbiol 2, 555–563.[CrossRef]
    [Google Scholar]
  28. Umeda, M. & Ohtsubo, E. ( 1991; ). Four types of IS1 with differences in nucleotide sequence reside in the Escherichia coli K-12 chromosome. Gene 98, 1–5.[CrossRef]
    [Google Scholar]
  29. Wackett, L. P. ( 2000; ). Environmental biotechnology. Trends Biotechnol 18, 19–21.[CrossRef]
    [Google Scholar]
  30. Yajima, S., Muto, Y., Morikawa, S., Nakamura, H., Yokoyama, S., Masaki, H. & Uozumi, T. ( 1993; ). The three-dimensional structure of the colicin E3 immunity protein by distance geometry calculation. FEBS Lett 333, 257–260.[CrossRef]
    [Google Scholar]
  31. Zarivach, R., Ben-Zeev, E., Wu, N. & 9 other authors ( 2002; ). On the interaction of colicin E3 with the ribosome. Biochimie 84, 447–454.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26618-0
Loading
/content/journal/micro/10.1099/mic.0.26618-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error