1887

Abstract

The tetracycline resistance protein, TetA(P), is an inner-membrane protein that mediates the active efflux of tetracycline from the bacterial cell. This protein comprises 420 aa and is predicted to have 12 transmembrane domains (TMDs). Comparison of the TetA(P) amino acid sequence to that of several members of the major facilitator superfamily (MFS) identified a variant copy of the conserved Motif A. This region consists of the sequence ExPxxxxxDxxxRK and is located within the putative loop joining TMDs 2 and 3 in the predicted structural model of the TetA(P) protein. To study the functional importance of the conserved residues, site-directed mutagenesis was used to construct 17 point mutations that were then analysed for their effect on tetracycline resistance and their ability to produce an immunoreactive TetA(P) protein. Changes to the conserved Phe-58 residue were tolerated, whereas three independent substitutions of Pro-61 abolished tetracycline resistance. Examination of the basic residues showed that Arg-71 is required for function, whereas tetracycline resistance was retained when Lys-72 was substituted with arginine. These results confirm that the region encoding this motif is important for tetracycline resistance and represents a distant version of the Motif A region found in other efflux proteins and members of the MFS family. In addition, it was shown that Glu-117 of the TetA(P) protein, which is predicted to be located in TMD4, is important for resistance although a derivative with an aspartate residue at this position is also functional.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26614-0
2004-01-01
2020-10-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/1/mic1500127.html?itemId=/content/journal/micro/10.1099/mic.0.26614-0&mimeType=html&fmt=ahah

References

  1. Abraham L. J., Berryman D. I., Rood J. I.. 1988; Hybridisation analysis of the class P tetracycline resistance determinant from the Clostridium perfringens R-plasmid, pCW3. Plasmid19:113–120[CrossRef]
    [Google Scholar]
  2. Bannam T. L., Rood J. I.. 1999; Identification of structural and functional domains of the tetracycline efflux protein TetA(P) from Clostridium perfringens. Microbiology145:2947–2955
    [Google Scholar]
  3. Bao Q., Tian Y., Li W..18 other authors 2002; A complete sequence of the T. tengcongensis genome. Genome Res12:689–700[CrossRef]
    [Google Scholar]
  4. Buchel D. E., Gronenborn B., Muller-Hill B.. 1980; Sequence of the lactose permease gene. Nature283:541–545[CrossRef]
    [Google Scholar]
  5. Cain S. M., Matzke E. A., Brooker R. J.. 2000; The conserved motif in hydrophilic loop 2/3 and loop 8/9 of the lactose permease of Escherichia coli. Analysis of suppressor mutations. . J Membr Biol176:159–168[CrossRef]
    [Google Scholar]
  6. Claros M. G., von Heijne G.. 1994; toppred ii: an improved software for membrane protein structure predictions. Comput Appl Biosci10:685–686
    [Google Scholar]
  7. Fraser C. M., Casjens S., Huang W. M..35 other authors 1997; Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature390:580–586[CrossRef]
    [Google Scholar]
  8. Frillingos S., Sahin-Toth M., Wu J., Kaback H. R.. 1998; Cys-scanning mutagenesis: a novel approach to structure function relationships in polytopic membrane proteins. FASEB J12:1281–1299
    [Google Scholar]
  9. Gerrits M. M., de Zoete M. R., Arents N. L., Kuipers E. J., Kusters J. G.. 2002; 16S rRNA mutation-mediated tetracycline resistance in Helicobacter pylori. Antimicrob Agents Chemother46:2996–3000[CrossRef]
    [Google Scholar]
  10. Henderson P. J.. 1990; Proton-linked sugar transport systems in bacteria. J Bioenerg Biomembr22:525–569[CrossRef]
    [Google Scholar]
  11. Hirai T., Heymann J. A. W., Shi D., Sarker R., Maloney P. C., Subramaniam S.. 2002; Three-dimensional structure of a bacterial oxalate transporter. Nat Struct Biol9:597–600
    [Google Scholar]
  12. Hirai T., Heymann J. A. W., Maloney P. C., Subramaniam S.. 2003; Structural model for 12-helix transporters belonging to the major facilitator superfamily. J Bacteriol185:1712–1718[CrossRef]
    [Google Scholar]
  13. Jessen-Marshall A. E., Paul N. J., Brooker R. J.. 1995; The conserved motif, GXXX(D/E)(R/K)XG[X](R/K)(R/K), in hydrophilic loop 2/3 of the lactose permease. J Biol Chem270:16251–16257[CrossRef]
    [Google Scholar]
  14. Jessen-Marshall A. E., Parker N. J., Brooker R. J.. 1997; Suppressor analysis of mutations in the loop 2-3 motif of lactose permease: evidence that glycine-64 is an important residue for conformational changes. J Bacteriol179:2616–2622
    [Google Scholar]
  15. Kennan R. M., McMurry L. M., Levy S. B., Rood J. I.. 1997; Glutamate residues located within putative transmembrane helices are essential for TetA(P)-mediated tetracycline efflux. J Bacteriol179:7011–7015
    [Google Scholar]
  16. Kimura T., Nakatani M., Kawabe T., Yamaguchi A.. 1998; Roles of conserved arginine residues in the metal-tetracycline/H+ antiporter ofEscherichia coli. Biochemistry37:5475–5480[CrossRef]
    [Google Scholar]
  17. Kimura-Someya T., Iwaki S., Yamaguchi A.. 1998; Site-directed chemical modification of cysteine-scanning mutants as to transmembrane segment II and its flanking regions of the Tn10-encoded metal-tetracycline/H+ antiporter reveals a transmembrane water-filled channel. J Biol Chem273:32806–32811[CrossRef]
    [Google Scholar]
  18. Lyras D., Rood J. I.. 1996; Genetic organization and distribution of tetracycline resistance determinants in Clostridium perfringens. Antimicrob Agents Chemother40:2500–2504
    [Google Scholar]
  19. Marger M. D., Saier M. H. Jr. 1993; A major superfamily of transmembrane facilitators that catalyse uniport, symport and antiport. Trends Biochem Sci18:13–20[CrossRef]
    [Google Scholar]
  20. Miller J.. 1972; Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  21. Ng W. V., Kennedy S. P., Mahairas G. G.. & 40 other authors. 2000; Genome sequence of Halobacterium species NRC-1. Proc Natl Acad Sci U S A97:12176–12181[CrossRef]
    [Google Scholar]
  22. Nguyen T. T., Postle K., Bertrand K. P.. 1983; Sequence homology between the tetracycline-resistance determinants of Tn10 and pBR322. Gene25:83–92[CrossRef]
    [Google Scholar]
  23. Nolling J., Breton G., Omelchenko M. V..16 other authors 2001; Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. J Bacteriol183:4823–4838[CrossRef]
    [Google Scholar]
  24. Pao S. S., Paulsen I. T., Saier M. H. Jr. 1998; Major facilitator superfamily. Microbiol Mol Biol Rev62:1–34
    [Google Scholar]
  25. Paulsen I. T., Skurray R. A.. 1993; Topology, structure and evolution of two families of proteins involved in antibiotic and antiseptic resistance in eukaryotes and prokaryotes – an analysis. Gene124:1–11[CrossRef]
    [Google Scholar]
  26. Paulsen I. T., Brown M. H., Skurray R. A.. 1996; Proton-dependent multidrug efflux systems. Microbiol Rev60:575–608
    [Google Scholar]
  27. Pazdernik N. J., Matzke E. A., Jessen-Marshall A. E., Brooker R. J.. 2000; Roles of charged residues in the conserved motif, G-X-X-X-D/E-R/K-X-G-[X]-R/K-R/K, of the lactose permease of Escherichia coli]. J Membr Biol174:31–40[CrossRef]
    [Google Scholar]
  28. Saier M. H. Jr, Beatty J. T., Goffeau A.. & 11 other authors. 1999; The major facilitator superfamily. J Mol Microbiol Biotechnol1:257–279
    [Google Scholar]
  29. Sato M., Mueckler M.. 1999; A conserved amino acid motif (R-X-G-R-R) in the Glut1 glucose transporter is an important determinant of membrane topology. J Biol Chem274:24721–24725[CrossRef]
    [Google Scholar]
  30. Sloan J., McMurry L. M., Lyras D., Levy S. B., Rood J. I.. 1994; The Clostridium perfringens Tet P determinant comprises two overlapping genes: tetA(P), which mediates active tetracycline efflux, and tetB(P), which is related to the ribosomal protection family of tetracycline-resistance determinants. Mol Microbiol11:403–415[CrossRef]
    [Google Scholar]
  31. Tamura N., Konishi S., Iwaki S., Kimura-Someya T., Nada S., Yamaguchi A.. 2001; Complete cysteine-scanning mutagenesis and site-directed chemical modification of the Tn10-encoded metal-tetracycline/H+ antiporter. J Biol Chem276:20330–20339[CrossRef]
    [Google Scholar]
  32. Tomb J.-F., White O., Kerlavage A. R..39 other authors 1997; The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature388:539–547[CrossRef]
    [Google Scholar]
  33. Yamaguchi A., Udagawa T., Sawai T.. 1990; Transport of divalent cations with tetracycline as mediated by the transposon Tn10-encoded tetracycline resistance protein. J Biol Chem265:4809–4813
    [Google Scholar]
  34. Yamaguchi A., Someya Y., Sawai T.. 1992; Metal-tetracycline/H+ antiporter of Escherichia coli encoded by transposon Tn10. The role of a conserved sequence motif, GXXXXRXGRR, in a putative cytoplasmic loop between helices 2 and 3. J Biol Chem267:19155–19162
    [Google Scholar]
  35. Yoshida K., Seki S., Fujimura M., Miwa Y., Fujita Y.. 1995; Cloning and sequencing of a 36-kb region of the Bacillus subtilis genome between the gnt and iol operons. DNA Res2:61–69[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26614-0
Loading
/content/journal/micro/10.1099/mic.0.26614-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error