1887

Abstract

Antifreeze proteins (AFPs) are a structurally diverse group of proteins that have the ability to modify ice crystal structure and inhibit recrystallization of ice. AFPs are well characterized in fish and insects, but very few bacterial species have been shown to have AFP activity to date. Thirty eight freshwater to hypersaline lakes in the Vestfold Hills and Larsemann Hills of Eastern Antarctica were sampled for AFPs during 2000. Eight hundred and sixty six bacterial isolates were cultivated. A novel AFP assay, designed for high-throughput analysis in Antarctica, demonstrated putative activity in 187 of the cultures. Subsequent analysis of the putative positive isolates showed 19 isolates with significant recrystallization inhibition (RI) activity. The 19 RI active isolates were characterized using ARDRA (amplified rDNA restriction analysis) and 16S rDNA sequencing. They belong to genera from the - and -, with genera from the -subdivision being predominant. The 19 AFP-active isolates were isolated from four physico-chemically diverse lakes. Ace Lake and Oval Lake were both meromictic with correspondingly characteristic chemically stratified water columns. Pendant Lake was a saline holomictic lake with different chemical properties to the two meromictic lakes. Triple Lake was a hypersaline lake rich in dissolved organic carbon and inorganic nutrients. The environments from which the AFP-active isolates were isolated are remarkably diverse. It will be of interest, therefore, to elucidate the evolutionary forces that have led to the acquisition of functional AFP activity in microbes of the Vestfold Hills lakes and to discover the role the antifreezes play in these organisms.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26610-0
2004-01-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/1/mic1500171.html?itemId=/content/journal/micro/10.1099/mic.0.26610-0&mimeType=html&fmt=ahah

References

  1. Adamson, D. A. & Pickard, J. ( 1986; ). Cainozoic history of the Vestfold Hills. In Antarctic Oases: Terrestrial Environments and History of the Vestfold Hills, pp. 63–97. Edited by J. Pickard. Sydney: Academic Press.
  2. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Microbiol 215, 403–410.
    [Google Scholar]
  3. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. & Struhl, K. (editors) ( 1999; ). Short Protocols in Molecular Biology. New York: Wiley.
  4. Barrett, J. ( 2001; ). Thermal hysteresis proteins. Int J Biochem Cell Biol 33, 105–117.[CrossRef]
    [Google Scholar]
  5. Bridson, E. Y. ( 1998; ). The Oxoid Manual, 8th edn. Basingstoke: Oxoid.
  6. Burton, H. R. ( 1981; ). Chemistry, physics and evolution of Antarctic saline lakes. Hydrobiologia 82, 339–362.
    [Google Scholar]
  7. Davies, P. L. & Sykes, B. D. ( 1997; ). Antifreeze proteins. Curr Opin Struct Biol 7, 828–834.[CrossRef]
    [Google Scholar]
  8. Duman, J. G. ( 1994; ). Purification and characterization of a thermal hysteresis protein from a plant, the bittersweet nightshade Solanum dulcamara. Biochim Biophys Acta 1206, 129–135.[CrossRef]
    [Google Scholar]
  9. Duman, J. G. ( 2001; ). Antifreeze and ice nucleator proteins in terrestrial arthropods. Annu Rev Physiol 63, 327–357.[CrossRef]
    [Google Scholar]
  10. Duman, J. G. & Olsen, T. M. ( 1993; ). Thermal hysteresis protein activity in bacteria, fungi, and phylogenetically diverse plants. Cryobiology 30, 322–328.[CrossRef]
    [Google Scholar]
  11. Fields, P. A. ( 2001; ). Review: protein function at thermal extremes: balancing stability and flexibility. Comp Biochem Physiol A 129, 417–431.[CrossRef]
    [Google Scholar]
  12. Fletcher, G. L., Hew, C. L. & Davies, P. L. ( 2001; ). Antifreeze proteins of teleost fishes. Annu Rev Physiol 63, 359–390.[CrossRef]
    [Google Scholar]
  13. George, A. L., Murray, A. W. & Montiel, P. O. ( 2001; ). Tolerance of Antarctic cyanobacterial mats to enhanced UV radiation. FEMS Microbiol Ecol 37, 91–101.[CrossRef]
    [Google Scholar]
  14. Griffith, M., Ala, P., Yang, D. S. C., Hon, W. & Moffatt, B. A. ( 1992; ). Antifreeze protein produced endogenously in winter rye leaves. Plant Physiol 100, 593–596.[CrossRef]
    [Google Scholar]
  15. Hand, R. M. ( 1980; ). Bacterial populations of two saline Antarctic lakes. In Biogeochemistry of Ancient and Modern Environments. Proceedings of the Fourth International Symposium on Environmental Biogeochemistry (ISEB). Edited by P. A. Trudinger & M. R. Walter. Canberra: Australian Academy of Science.
  16. Henshaw, T. & Laybourn-Parry, J. ( 2002; ). The annual patterns of photosynthesis in two large, freshwater, ultra-oligotrophic Antarctic lakes. Polar Biol 25, 744–752.
    [Google Scholar]
  17. Herbert, R. A. ( 1986; ). The ecology and physiology of psychrophilic microorganisms. In Microbes in Extreme Environments. Special Publication of the Society for General Microbiology. Edited by R. A. Herbert & G. A. Codd. London: Academic Press.
  18. Ivanova, E. P., Romanenko, L. A., Chun, J. & 7 other authors ( 2000; ). Idiomarina gen. nov., comprising novel indigenous deep-sea bacteria from the Pacific Ocean, including descriptions of two species, Idiomarina abyssalis sp. nov. and Idiomarina zobellii sp. nov. Int J Syst Evol Microbiol 50, 901–907.[CrossRef]
    [Google Scholar]
  19. Jawad, A., Snelling, A. M., Heritage, J. & Hawkey, P. M. ( 1998; ). Comparison of ARDRA and recA-RFLP analysis for genomic species identification of Acinetobacter spp. FEMS Microbiol Lett 165, 357–362.[CrossRef]
    [Google Scholar]
  20. Jia, Z. & Davies, P. L. ( 2002; ). Antifreeze proteins: an unusual receptor–ligand interaction. Trends Biochem Sci 27, 101–106.[CrossRef]
    [Google Scholar]
  21. Johnston, K., Somon, F. J. & Ellar, D. J. ( 1982; ). Teichoic acid and lipid metabolism during sporulation of Bacillus megaterium KM. Biochem J 202, 459–467.
    [Google Scholar]
  22. Kawahara, H., Li, J., Griffith, M. & Glick, B. R. ( 2001; ). Relationship between antifreeze protein and freezing resistance in Pseudomonas putida GR12-2. Curr Microbiol 43, 365–370.[CrossRef]
    [Google Scholar]
  23. Kerry, K. R., Grace, D. R., Williams, R. & Burton, H. R. ( 1977; ). Studies on some saline lakes of the Vestfold Hills, Antarctica. In Adaptations within Antarctic Ecosystems. Proceedings of the Third SCAR Symposium on Antarctic Biology. Edited by G. A. Llano. Washington, DC: Smithsonian Institution.
  24. Knight, C. A., Hallett, J. & Devries, A. L. ( 1988; ). Solute effects on ice recrystallisation: an assessment technique. Cryobiology 25, 55–60.[CrossRef]
    [Google Scholar]
  25. Laybourn-Parry, J., Quayle, W. & Henshaw, T. ( 2002; ). The functional dynamics and evolution of Antarctic saline lakes in relation to salinity and trophy. Polar Biol 25, 542–552.[CrossRef]
    [Google Scholar]
  26. Mackereth, F. J. H., Heron, J. & Falling, J. I. ( 1988; ). Water Analysis. Freshwater Biological Association Scientific Publication 36. Ambleside: Freshwater Biological Association.
  27. Marshall, W. A. ( 1996; ). Biological particles over Antarctica. Nature 383, 680.[CrossRef]
    [Google Scholar]
  28. Meyer, K., Keil, M. & Naldrett, M. J. ( 1999; ). A leucine-rich protein of carrot that exhibits antifreeze activity. FEBS Lett 447, 171–178.[CrossRef]
    [Google Scholar]
  29. Michener, C. D. & Sokal, R. R. ( 1957; ). A quantitative approach to a problem in classification. Evolution 11, 130–162.[CrossRef]
    [Google Scholar]
  30. Mills, S. V. ( 1999; ). Novel biochemical compounds from Antarctic microorganisms. PhD thesis, Nottingham University.
  31. Perriss, S. J. & Laybourn-Parry, J. ( 1997; ). Microbial communities in the saline lakes of the Vestfold Hills (Eastern Antarctica). Polar Biology 18, 135–144.[CrossRef]
    [Google Scholar]
  32. Pudney, P. D., Buckley, S. L., Sidebottom, C. M. & 7 other authors ( 2003; ). The physico-chemical characterization of a boiling stable antifreeze protein from a perennial grass (Lolium perenne). Arch Biochem Biophys 410, 238–245.[CrossRef]
    [Google Scholar]
  33. Ray, M. K., Sitaramamma, T., Ghandhi, S. & Shivaji, S. ( 1994; ). Occurrence and expression of cspA, a cold shock gene, in Antarctic psychrophilic bacteria. FEMS Microbiol Lett 116, 55–60.[CrossRef]
    [Google Scholar]
  34. Raymond, J. A. & DeVries, A. L. ( 1977; ). Adsorption inhibition as a mechanism of freezing resistance in polar fishes. Proc Natl Acad Sci U S A 74, 2589–2593.[CrossRef]
    [Google Scholar]
  35. Raymond, J. A. & Fritsen, C. H. ( 2001; ). Semipurification and ice recrystallisation inhibition activity of ice-active substances associated with Antarctic photosynthetic organisms. Cryobiology 43, 63–70.[CrossRef]
    [Google Scholar]
  36. Rodina, A. G. ( 1972; ). Methods in Aquatic Microbiology. Baltimore: University Park Press.
  37. Rotert, K. R., Toste, A. P. & Steiert, J. G. ( 1993; ). Membrane fatty acid analysis of Antarctic bacteria. FEMS Microbiol Lett 114, 253–258.[CrossRef]
    [Google Scholar]
  38. Russell, N. J. & Hamamoto, T. ( 1998; ). Psychrophiles. In Extremophiles: Microbial Life in Extreme Environments, pp. 25–45. Edited by K. Horikoshi & W. D. Grant. Chichester: Wiley-Liss.
  39. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  40. Sun, X., Griffith, M., Pasternak, J. J. & Glick, B. R. ( 1995; ). Low temperature growth, freezing survival and production of antifreeze protein by the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Can J Microbiol 41, 776–784.[CrossRef]
    [Google Scholar]
  41. Vaneechoutte, M., Dijkshoorn, L., Tjernberg, I., Elaichouni, A., De Vos, P., Claeys, G. & Verschraegen, G. ( 1995; ). Identification of Acinetobacter genomic species by amplified ribosomal DNA restriction analysis. J Clin Microbiol 33, 11–15.
    [Google Scholar]
  42. Whyte, L. G. & Innis, W. E. ( 1992; ). Cold shock proteins and cold acclimation proteins in a psychrotrophic bacterium. Can J Microbiol 38, 1281–1285.[CrossRef]
    [Google Scholar]
  43. Worrall, D., Elias, L., Ashford, D., Smallwood, M., Sidebottom, C., Lillford, P., Telford, J., Holt, C. & Bowles, D. ( 1998; ). A carrot leucine-rich-repeat protein that inhibits ice recrystallisation. Science 282, 115–117.[CrossRef]
    [Google Scholar]
  44. Xu, H., Griffith, M., Patten, C. L. & Glick, B. R. ( 1998; ). Isolation and characterization of an antifreeze protein with ice nucleation activity from the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Can J Microbiol 44, 64–73.[CrossRef]
    [Google Scholar]
  45. Yamashita, Y., Nakamura, N., Omiya, K., Nishikawa, J., Kawahara, H. & Obata, H. ( 2002; ). Identification of an antifreeze lipoprotein from Moraxella sp. of Antarctic origin. Biosci Biotechnol Biochem 66, 239–247.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26610-0
Loading
/content/journal/micro/10.1099/mic.0.26610-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error