1887

Abstract

The LysR-type transcriptional regulator (LTTR) CysB is a transcription factor in cells, where as a homotetramer it binds the target promoter regions and activates the genes involved in sulphur utilization and sulphonate-sulphur metabolism, while negatively autoregulating its own transcription. The gene was found to be negatively regulated by CysB and directly correlated with novobiocin resistance of the bacterium. mutants showed upregulation of the  : :  gene fusion and exhibited increased novobiocin resistance. In this study the transcription start point and the corresponding putative promoter were determined. The promoter region was defined by employing different operon fusions, and transcription of the gene was shown to be subject to both repression imposed by the CysB regulator and direct or indirect autogenous negative control. These two regulations compete to some extent but they are not mutually exclusive. CysB acts as a direct repressor of transcription and binds the promoter region that carries the putative CysB repressor site. This CysB binding, apparently responsible for repression, is enhanced in the presence of the ligand -acetylserine (NAS), hitherto considered to be a positive cofactor in CysB-mediated gene regulations. Interallelic complementation of characterized CysB mutants I33N and S277Ter partially restored the repression of transcription and the consequent novobiocin sensitivity, but did not complement the cysteine auxotrophy.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26609-0
2003-12-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/12/mic1493449.html?itemId=/content/journal/micro/10.1099/mic.0.26609-0&mimeType=html&fmt=ahah

References

  1. Aiba, H., Adhya, S. & de Crombrugghe, B. ( 1981; ). Evidence for two functional gal promoters in intact Escherichia coli cells. J Biol Chem 256, 11905–11910.
    [Google Scholar]
  2. Bradford, M. M. ( 1976; ). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 12, 248–254.
    [Google Scholar]
  3. Bryan, J. K. ( 1977; ). Molecular weights of protein multimers from polyacrylamide gel electrophoresis. Anal Biochem 78, 513–519.[CrossRef]
    [Google Scholar]
  4. Bullock, W. O., Fernandez, M. & Shotr, J. M. ( 1987; ). XL1-Blue: a high efficiency plasmid transforming recA Escherichia coli strain with beta-galactosidase selection. BioTechniques 5, 376–378.
    [Google Scholar]
  5. Casadaban, M. J. ( 1976; ). Transposition and fusion of the lac genes in the selected phenotypes in E. coli using bacteriophage lambda and Mu. J Mol Biol 104, 541–555.[CrossRef]
    [Google Scholar]
  6. Colyer, T. E. & Kredich, N. M. ( 1994; ). Residue threonine-149 of the Salmonella typhimurium CysB transcription activator: mutations causing constitutive expression of positively regulated genes of the cysteine regulon. Mol Microbiol 13, 797–805.[CrossRef]
    [Google Scholar]
  7. Galas, D. J. & Chandler, M. ( 1991; ). Bacterial insertion sequences. In Mobile DNA, pp. 109–162. Edited by D. E. Berg & and M. M. Howe. Washington, DC: American Society for Microbiology.
  8. Gerendasy, D. & Ito, J. ( 1990; ). Nucleotide sequence and transcription of the right early region of bacteriophage PRD1. J Bacteriol 172, 1889–1898.
    [Google Scholar]
  9. Goethals, K., Van Montagu, M. & Holsters, M. ( 1992; ). Conserved motifs in a divergent nod box of Azorhizobium caulinodans ORS571 reveal a common structure in promoters regulated by LysR-type proteins. Proc Natl Acad Sci U S A 89, 1646–1650.[CrossRef]
    [Google Scholar]
  10. Grana, D., Gardella, T. & Susskind, M. M. ( 1988; ). The effect of mutations in the ant promoter of phage P22 depend on context. Genetics 120, 319–327.
    [Google Scholar]
  11. Gross, A. C. ( 1996; ). Function and regulation of the heat shock proteins. In Escherichia coli and Salmonella: Cellular and Molecular Biology, vol. 2, pp. 1382–1399. Edited by F. C. Neidhardt and others. Washington, DC: American Society for Microbiology.
  12. Hopwood, D. A., Bibb, J. M., Chater, K. F. & 7 other authors ( 1985; ). Genetic Manipulation of Streptomyces, a Laboratory Manual. Norwich, UK: John Innes Foundation.
  13. Hryniewicz, M. M. & Kredich, N. M. ( 1994; ). Stoichiometry of binding of CysB to the cysJIH, cysK, and cysP promoter regions of Salmonella typhimurium. J Bacteriol 176, 3673–3682.
    [Google Scholar]
  14. Hryniewicz, M. M. & Kredich, N. M. ( 1995; ). Hydroxyl radical footprints and half-site arrangements of binding sites for the CysB transcriptional activator of Salmonella typhimurium. J Bacteriol 177, 2343–2353.
    [Google Scholar]
  15. Kredich, N. M. ( 1996; ). Biosynthesis of cysteine. In Escherichia coli and Salmonella: Cellular and Molecular Biology, vol. 1, pp. 514–527. Edited by F. C. Neidhardt and others. Washington, DC: American Society for Microbiology.
  16. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–690.[CrossRef]
    [Google Scholar]
  17. Lange, R. & Hengge-Aronis, R. ( 1991; ). Growth phase-regulated expression of bolA and morphology of stationary-phase Escherichia coli cells is controlled by the novel sigma factor σ S (rpoS). J Bacteriol 173, 4474–4481.
    [Google Scholar]
  18. Lilic, M., Jovanovic, M., Jovanovic, G. & Savic, D. J. ( 2003; ). Identification of the CysB-regulated gene, hslJ, related to the Escherichia coli novobiocin resistance phenotype. FEMS Microbiol Lett 224, 239–246.[CrossRef]
    [Google Scholar]
  19. Lochowska, A., Iwanicka-Nowicka, R., Plochocka, D. & Hryniewicz, M. M. ( 2001; ). Functional dissection of the LysR-type CysB transcriptional regulator. J Biol Chem 276, 2098–2107.[CrossRef]
    [Google Scholar]
  20. Miller, J. H. ( 1992; ). A Short Course in Bacterial Genetics. A Laboratory Manual and Handbook for Escherichia coli and Related Bacteria. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  21. Model, P., Jovanovic, G. & Dworkin, J. ( 1997; ). The Escherichia coli phage-shock-protein (psp) operon. Mol Microbiol 24, 255–261.[CrossRef]
    [Google Scholar]
  22. Ostrowski, J., Jagura-Burdzy, G. & Kredich, N. M. ( 1987; ). DNA sequences of the cysB regions of Salmonella typhimurium and Escherichia coli. J Biol Chem 262, 5999–6005.
    [Google Scholar]
  23. Pabo, C. O. & Sauer, R. T. ( 1992; ). Transcription factors: structural families and principles of DNA recognition. Annu Rev Biochem 61, 1053–1095.[CrossRef]
    [Google Scholar]
  24. Parry, J. & Clark, D. P. ( 2002; ). Identification of a CysB-regulated gene involved in glutathione transport in Escherichia coli. FEMS Microbiol Lett 209, 81–85.[CrossRef]
    [Google Scholar]
  25. Perez-Rueda, E. & Collado-Vides, J. ( 2000; ). The repertoire of DNA-binding transcriptional regulators in Escherichia coli K-12. Nucleic Acids Res 28, 1838–1847.[CrossRef]
    [Google Scholar]
  26. Prentki, P., Chandler, M. & Galas, D. J. ( 1987; ). Escherichia coli integration host factor bends the DNA at the ends of IS1 and in an insertion hotspot with multiple IHF binding sites. EMBO J 6, 2479–2487.
    [Google Scholar]
  27. Rakonjac, J., Milic, M. & Savic, D. J. ( 1991; ). cysB and cysE mutants of Escherichia coli K12 show increased resistance to novobiocin. Mol Gen Genet 228, 307–311.
    [Google Scholar]
  28. Rowbury, R. J. ( 1997; ). Regulatory components, including integration host factor, CysB and H-NS, that influence pH responses in Escherichia coli. Lett Appl Microbiol 24, 319–328.[CrossRef]
    [Google Scholar]
  29. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  30. Sanger, F., Nicklen, S. & Coulson, A. R. ( 1977; ). DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74, 5463–5467.[CrossRef]
    [Google Scholar]
  31. Schell, M. A. ( 1993; ). Molecular biology of the LysR family of transcriptional activators. Annu Rev Microbiol 47, 597–626.[CrossRef]
    [Google Scholar]
  32. Shi, X. & Bennett, G. N. ( 1994; ). Effects of rpoA and cysB mutations on acid induction of biodegradative arginine decarboxylase in Escherichia coli. J Bacteriol 176, 7017–7023.
    [Google Scholar]
  33. Simons, R. W., Houman, F. & Kleckner, N. ( 1987; ). Improved single and multicopy lac-based cloning vectors for protein and operon fusions. Gene 53, 85–96.[CrossRef]
    [Google Scholar]
  34. Tyrell, R., Verschueren, H. K., Dodson, E. J., Murshudov, G. N., Addy, C. & Wilkinson, A. J. ( 1997; ). The structure of the cofactor-binding fragment of the LysR family member, CysB: a familiar fold with a surprising subunit arrangement. Structure 5, 1017–1032.[CrossRef]
    [Google Scholar]
  35. van der Ploeg, J. R., Eichhorn, E. & Leisinger, T. ( 2001; ). Sulfonate-sulfur metabolism and its regulation in Escherichia coli. Arch Microbiol 176, 1–8.[CrossRef]
    [Google Scholar]
  36. Verschueren, K. H., Addy, C., Dodson, E. J. & Wilkinson, A. J. ( 2001; ). Crystallization of full-length CysB of Klebsiella aerogenes, a LysR-type transcriptional regulator. Acta Crystallogr D Biol Crystallogr 57, 260–262.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26609-0
Loading
/content/journal/micro/10.1099/mic.0.26609-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error