1887

Abstract

Incorporation of gene cassettes into integrons occurs by IntI-mediated site-specific recombination between a 59-base element (59-be) site in the cassette and an site in the integron. While the 59-be sites share common features and are recognized by several different IntI recombinases, the sequences of sites are not obviously related and are preferentially recognized by the cognate IntI. To determine the features of sites that are required for recombination proficiency, the structure–activity relationships of a second site, the site from the class 3 integron, were examined. The site was confined to within a region consisting of 68 bp from the integron backbone and 15 bp from the adjacent cassette. This region includes four IntI3-binding sites, as assessed by gel shift and methylation interference studies. Two of the binding sites are inversely oriented and constitute a simple site that includes the recombination crossover point. The two additional binding sites appear to be directly oriented and one of them is essential for efficient recombination of the site with a 59-be, but not for recombination with a second full-length site, which occurs at 100-fold lower frequency. The fourth site enhances with 59-be recombination 10-fold. The finding that the organization and overall properties of are very similar to those of indicates that these features are likely to be common to all .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26596-0
2004-05-01
2020-10-01
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/5/mic1501591.html?itemId=/content/journal/micro/10.1099/mic.0.26596-0&mimeType=html&fmt=ahah

References

  1. Alen C., Sherratt D. J., Colloms S. D.. 1997; Direct interaction of aminopeptidase A with recombination site DNA in Xer site-specific recombination. EMBO J16:5188–5197[CrossRef]
    [Google Scholar]
  2. Arakawa Y., Murakami M., Suzuki K., Ito H., Wacharotayankun R., Ohsuka S., Kato N., Ohta M.. 1995; A novel integron-like element carrying the metallo-β-lactamase geneblaIMP. Antimicrob Agents Chemother39:1612–1615[CrossRef]
    [Google Scholar]
  3. Baum J. A.. 1995; TnpI recombinase: identification of sites within Tn5401 required for TnpI binding and site-specific recombination. J Bacteriol177:4036–4042
    [Google Scholar]
  4. Bunny K. L., Hall R. M., Stokes H. W.. 1995; New mobile gene cassettes containing an aminoglycoside resistance gene, aacA7, and a chloramphenicol resistance gene, catB3, in an integron in pBWH301. Antimicrob Agents Chemother39:686–693[CrossRef]
    [Google Scholar]
  5. Collis C. M., Hall R. M.. 1992a; Gene cassettes from the insert region of integrons are excised as covalently closed circles. Mol Microbiol6:2875–2885[CrossRef]
    [Google Scholar]
  6. Collis C. M., Hall R. M.. 1992b; Site-specific deletion and rearrangement of integron insert genes catalysed by integron DNA integrase. J Bacteriol174:1574–1585
    [Google Scholar]
  7. Collis C. M., Grammaticopoulos G., Briton J., Stokes H. W., Hall R. M.. 1993; Site-specific insertion of gene cassettes into integrons. Mol Microbiol9:41–52[CrossRef]
    [Google Scholar]
  8. Collis C. M., Kim M.-J., Stokes H. W., Hall R. M.. 1998; Binding of the purified integron DNA integrase IntI1 to integron- and cassette-associated recombination sites. Mol Microbiol29:477–490[CrossRef]
    [Google Scholar]
  9. Collis C. M., Recchia G. D., Kim M.-J., Stokes H. W., Hall R. M.. 2001; Efficiency of recombination reactions catalyzed by class 1 integron integrase IntI1. J Bacteriol183:2535–2542[CrossRef]
    [Google Scholar]
  10. Collis C. M., Kim M.-J., Partridge S. R., Stokes H. W., Hall R. M.. 2002a; Characterization of the class 3 integron and the site-specific recombination system it determines. J Bacteriol184:3017–3026[CrossRef]
    [Google Scholar]
  11. Collis C. M., Kim M.-J., Stokes H. W., Hall R. M.. 2002b; Integron-encoded IntI integrases preferentially recognize the adjacent cognate attI site in recombination with a 59-be site. Mol Microbiol46:1415–1427[CrossRef]
    [Google Scholar]
  12. Colloms S. D., McCulloch R., Grant K., Neilson L., Sherratt D. J.. 1996; Xer-mediated site-specific recombination in vitro. EMBO J15:1172–1181
    [Google Scholar]
  13. Colloms S. D., Alen C., Sherratt D. J.. 1998; The ArcA/ArcB two-component regulatory system of Escherichia coli is essential for Xer site-specific recombination at psi. Mol Microbiol28:521–530[CrossRef]
    [Google Scholar]
  14. Datta N., Hedges R. W.. 1972; Trimethoprim resistance conferred by W plasmids in Enterobacteriaceae. J Gen Microbiol72:349–355[CrossRef]
    [Google Scholar]
  15. Drouin F., Mélançon, J., Roy P. H.. 2002; The IntI-like tyrosine recombinase of Shewanella oneidensis is active as an integron integrase. J Bacteriol184:1811–1815[CrossRef]
    [Google Scholar]
  16. Gopaul D. N., Van Duyne G. D.. 1999; Structure and mechanism in site-specific recombination. Curr Opin Struct Biol9:14–20[CrossRef]
    [Google Scholar]
  17. Grainge I., Jayaram M.. 1999; The integrase family of recombinases: organization and function of the active site. Mol Microbiol33:449–456[CrossRef]
    [Google Scholar]
  18. Gravel A., Fournier B., Roy P. H.. 1998; DNA complexes obtained with the integron integrase IntI1 at the attI1 site. Nucleic Acids Res26:4347–4355[CrossRef]
    [Google Scholar]
  19. Grindley N. D.. 1997; Site-specific recombination: synapsis and strand exchange revealed. Curr Biol7:R608–R612[CrossRef]
    [Google Scholar]
  20. Hall R. M.. 2002; Gene cassettes and integrons: moving single genes. In Horizontal Gene Transfer pp.19–28 Edited by Syvanen M., Kado C. I.. London: Academic Press;
  21. Hall R. M., Collis C. M.. 1995; Mobile gene cassettes and integrons: capture and spread of genes by site-specific recombination. Mol Microbiol15:593–600
    [Google Scholar]
  22. Hall R. M., Collis C. M.. 1998; Antibiotic resistance in gram-negative bacteria: the role of gene cassettes and integrons. Drug Resist Updates1:109–119[CrossRef]
    [Google Scholar]
  23. Hall R. M., Brookes D. E., Stokes H. W.. 1991; Site-specific insertion of genes into integrons: role of the 59-base element and determination of the recombination cross-over point. Mol Microbiol5:1941–1959[CrossRef]
    [Google Scholar]
  24. Hall R. M., Collis C. M., Kim M.-J., Partridge S. R., Recchia G. D., Stokes H. W.. 1999; Mobile gene cassettes and integrons in evolution. Ann N Y Acad Sci870:68–80[CrossRef]
    [Google Scholar]
  25. Hansson K., Sköld O., Sundström L.. 1997; Non-palindromic attI sites of integrons are capable of site-specific recombination with one another and with secondary targets. Mol Microbiol26:441–453[CrossRef]
    [Google Scholar]
  26. Hansson K., Sundström L., Pelletier A., Roy P. H.. 2002; IntI2 integron integrase in Tn7. J Bacteriol184:1712–1721[CrossRef]
    [Google Scholar]
  27. Hochhut B., Lotfi Y., Mazel D., Faruque S. M., Woodgate R., Waldor M. K.. 2001; Molecular analysis of antibiotic resistance gene clusters in Vibrio cholerae O139 and O1 SXT constins. Antimicrob Agents Chemother45:2991–3000[CrossRef]
    [Google Scholar]
  28. Martinez E., de la Cruz F.. 1990; Genetic elements involved in Tn21 site-specific integration, a novel mechanism for the dissemination of antibiotic resistance genes. EMBO J9:1275–1281
    [Google Scholar]
  29. Messier N., Roy P. H.. 2001; Integron integrases possess a unique additional domain necessary for activity. J Bacteriol183:6699–6706[CrossRef]
    [Google Scholar]
  30. Nash H. A.. 1996; Site-specific recombination: integration, excision, resolution and inversion of defined DNA segments. In Escherichia coli and Salmonella Cellular and Molecular Biology pp.2363–2376 Edited by Neidhardt F. C.. Washington, DC: American Society for Microbiology;
  31. Nield B. S., Holmes A. J., Gillings M. R., Recchia G. D., Mabbutt B. C., Nevalainen K. M. H., Stokes H. W.. 2001; Recovery of new integron classes from environmental DNA. FEMS Microbiol Lett195:59–65[CrossRef]
    [Google Scholar]
  32. Nunes-Düby S. E., Kwon H. J., Tirumalai R. S., Ellenberger T., Landy A.. 1998; Similarities and differences among 105 members of the Int family of site-specific recombinases. Nucleic Acids Res26:391–406[CrossRef]
    [Google Scholar]
  33. Partridge S. R., Recchia G. D., Scaramuzzi C., Collis C. M., Stokes H. W., Hall R. M.. 2000; Definition of the attI1 site of class 1 integrons. Microbiology146:2855–2864
    [Google Scholar]
  34. Recchia G. D., Hall R. M.. 1995; Gene cassettes: a new class of mobile element. Microbiology141:3015–3027[CrossRef]
    [Google Scholar]
  35. Recchia G. D., Hall R. M.. 1997; Origins of the mobile gene cassettes found in integrons. Trends Microbiol5:389–394[CrossRef]
    [Google Scholar]
  36. Recchia G. D., Stokes H. W., Hall R. M.. 1994; Characterisation of specific and secondary recombination sites recognised by the integron DNA integrase. Nucleic Acids Res22:2071–2078[CrossRef]
    [Google Scholar]
  37. Rose R. E.. 1988; The nucleotide sequence of pACYC184. Nucleic Acids Res16:355[CrossRef]
    [Google Scholar]
  38. Rowe-Magnus D. A., Guerout A.-M., Ploncard P., Dychinco B., Davies J., Mazel D.. 2001; The evolutionary history of chromosomal super-integrons provides an ancestry for multiresistant integrons. Proc Natl Acad Sci U S A98:652–657[CrossRef]
    [Google Scholar]
  39. Sadowski P.. 1986; Site-specific recombinases: changing partners and doing the twist. J Bacteriol165:341–347
    [Google Scholar]
  40. Stark W. M., Boocock M. R., Sherratt D. J.. 1992; Catalysis by site-specific recombinases. Trends Genet8:432–439[CrossRef]
    [Google Scholar]
  41. Stokes H. W., Hall R. M.. 1989; A novel family of potentially mobile DNA elements encoding site-specific gene-integration functions: integrons. Mol Microbiol3:1669–1683[CrossRef]
    [Google Scholar]
  42. Stokes H. W., O'Gorman D. B., Recchia G. D., Parsekhian M., Hall R. M.. 1997; Structure and function of 59-base element recombination sites associated with mobile gene cassettes. Mol Microbiol26:731–745[CrossRef]
    [Google Scholar]
  43. Vaisvila R., Morgan R. D., Posfai J., Raleigh E. A.. 2001; Discovery and distribution of super-integrons among Pseudomonads. Mol Microbiol42:587–601
    [Google Scholar]
  44. Weisberg R. A., Gottesmann M. E., Hendrix R. W., Little J. W.. 1999; Family values in the age of genomics: comparative analyses of temperate bacteriophage HK022. Annu Rev Genet33:565–602[CrossRef]
    [Google Scholar]
  45. Yang W., Mizuuchi K.. 1997; Site-specific recombination in plane view. Structure5:1401–1406[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26596-0
Loading
/content/journal/micro/10.1099/mic.0.26596-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error