1887

Abstract

This study reports the results of a collaborative study undertaken by two independent research groups to (a) confirm recent PCR-based detection of DNA in human teeth from medieval plague victims in France, and (b) to extend these observations over five different European burial sites believed to contain plague victims dating from the late 13th to 17th centuries. Several different sets of primers were used, including those previously documented to yield positive results on ancient DNA extracts. No DNA could be amplified from DNA extracted from 108 teeth belonging to 61 individuals, despite the amplification of numerous other bacterial DNA sequences. Several methods of extracting dentine prior to the DNA extraction were also compared. PCR for bacterial 16S rDNA indicated the presence of multiple bacterial species in 23 out of 27 teeth DNA extracts where dentine was extracted using previously described methods. In comparison, positive results were obtained from only five out of 44 teeth DNA extracts for which a novel contamination-minimizing embedding technique was used. Therefore, high levels of environmental bacterial DNA are present in DNA extracts where previously described methods of tooth manipulation are used. To conclude, the absence of -specific DNA in an exhaustive search using specimens from multiple putative European plague burial sites does not allow us to confirm the identification of as the aetiological agent of the Black Death and subsequent plagues. In addition, the utility of the published tooth-based ancient DNA technique used to diagnose fatal bacteraemias in historical epidemics still awaits independent corroboration.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26594-0
2004-02-01
2020-07-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/2/mic1500341.html?itemId=/content/journal/micro/10.1099/mic.0.26594-0&mimeType=html&fmt=ahah

References

  1. Aboudharam G., La Scola B., Raoult D., Drancourt M. 2000; Detection of Coxiella burnetii in the dental pulp during experimental bacteremia. Microb Pathog28:249–254[CrossRef]
    [Google Scholar]
  2. Austin J. J., Ross A. J., Smith A. B., Fortey R. A., Thomas R. H. 1997; Problems of reproducibility – does geologically ancient DNA survive in amber-preserved insects?. Proc R Soc Lond B Biol Sci264:467–474[CrossRef]
    [Google Scholar]
  3. Barnes I., Matheus P., Shapiro B., Jensen D., Cooper A. 2002; Dynamics of mammal population extinctions in Eastern Beringia during the last glaciation. Science295:2267–2270[CrossRef]
    [Google Scholar]
  4. Basler C. F., Reid A. H., Dybing J. K.. 9 other authors 2001; Sequence of the 1918 pandemic influenza virus nonstructural gene (NS) segment and characterization of recombinant viruses bearing the 1918 NS genes. Proc Natl Acad Sci U S A98:2746–2751[CrossRef]
    [Google Scholar]
  5. Bate A. L., Ma J. K., Pitt Ford T. R. 2000; Detection of bacterial virulence genes associated with infective endocarditis in infected root canals. Int Endod J33:194–203[CrossRef]
    [Google Scholar]
  6. Boom R., Sol C. J., Salimans M. M., Jansen C. L., Wertheim-van Dillen P. M., van der Noordaa J. 1990; Rapid and simple method for purification of nucleic acids. J Clin Microbiol28:495–503
    [Google Scholar]
  7. Catranis C., Starmer W. T. 1991; Microorganisms entrapped in glacial ice. Antarct J U S26:324–326
    [Google Scholar]
  8. Christner B. C., Mosley-Thompson E., Thompson L. G., Zagorodnov V., Sandman K., Reeve J. N. 2000; Recovery and identification of viable bacteria immured in glacial ice. Icarus144:479–485[CrossRef]
    [Google Scholar]
  9. Cohn S. 2002; The Black Death Transformed: Disease and Culture in Early Renaissance Europe London: Arnold;
    [Google Scholar]
  10. Conrads G., Gharbia S. E., Gulabivala K., Lampert F., Shah H. N. 1997; The use of a 16S rDNA directed PCR for the detection of endodontopathogenic bacteria. J Endod23:433–438[CrossRef]
    [Google Scholar]
  11. Cooper A. 1994; DNA from museum specimens. In Ancient DNA pp149–165 Edited by Hermann B., Hummel S.. New York: Springer-Verlag;
    [Google Scholar]
  12. Cooper A. 1997; Reply to Stoneking: ancient DNA – how do you really known when you have it?. Am J Hum Genet60:1001–1002
    [Google Scholar]
  13. Cooper A., Poinar H. N. 2000; Ancient DNA: do it right or not at all. Science289:1139
    [Google Scholar]
  14. Cooper A., Lalueza-Fox C., Anderson S., Rambaut A., Austin J., Ward R. 2001; Complete mitochondrial genome of two extinct moas clarify ratite evolution. Nature409:704–707[CrossRef]
    [Google Scholar]
  15. Deng W., Burland V., 18 other authors Plunkett G. 3rd. 2002; Genome sequence of Yersinia pestis KIM. J Bacteriol184:4601–4611[CrossRef]
    [Google Scholar]
  16. Drancourt M., Raoult D. 2002; Molecular insights into the history of plague. Microbes Infect4:105–109[CrossRef]
    [Google Scholar]
  17. Drancourt M., Aboudharam G., Signoli M., Dutour O., Raoult D. 1998; Detection of 400-year-old Yersinia pestis DNA in human dental pulp : an approach to the diagnosis of ancient septicemia. Proc Natl Acad Sci U S A95:12637–12640[CrossRef]
    [Google Scholar]
  18. Endicott P., Gilbert M. T., Stringer C., Lalueza-Fox C., Willerslev E., Hansen A. J., Cooper A. 2003; The genetic origins of the Andaman Islanders. Am J Hum Genet72:178–184[CrossRef]
    [Google Scholar]
  19. Essack S. Y., Hall L. M., Pillay D. G., McFayden M. L., Livermore D. M. 2001; Complexity and diversity of Klebsiella pneumoniae strains with extended-spectrum beta-lactamases isolated in 1994 and 1996 at a teaching hospital in Durban, South Africa. Antimicrob Agents Chemother45:88–95[CrossRef]
    [Google Scholar]
  20. Filippov A. A., Solodovnikov N. S., Kookleva L. M., Protsenko O. A. 1990; Plasmid content in Yersinia pestis strains of different origin. FEMS Microbiol Lett55:45–48
    [Google Scholar]
  21. Finlay B. J., Clarke K. J. 1999; Ubiquitous dispersal of microbial species. Nature400:828[CrossRef]
    [Google Scholar]
  22. Finlay B. J., Esteban G. F., Olmo J. L., Tyler P. A. 1999; Global distribution of free-living microbial species. Ecography22:138–144[CrossRef]
    [Google Scholar]
  23. Fletcher H. A., Donoghue H. D., Holton J., Pap I., Spigelman M. 2003a; Widespread occurrence of Mycobacterium tuberculosis DNA from 18th–19th century Hungarians. Am J Phys Anthropol120:144–152[CrossRef]
    [Google Scholar]
  24. Fletcher H. A., Donoghue H. D., Taylor G. M., Spigelman M, van der Zanden A. G.. 2003b; Molecular analysis of Mycobacterium tuberculosis DNA from a family of 18th century Hungarians. Microbiology149:143–151[CrossRef]
    [Google Scholar]
  25. Gilbert M. T. P., Hansen A. J., Willerslev E., Rudbeck L., Barnes I., Lynnerup N., Cooper A. 2003a; Characterisation of genetic miscoding lesions caused by post mortem damage. Am J Hum Genet72:48–61[CrossRef]
    [Google Scholar]
  26. Gilbert M. T. P., Willerslev E., Hansen A. J., Rudbeck L., Barnes I., Lynnerup N., Cooper A. 2003b; Distribution patterns of post mortem damage in human mitochondrial DNA. Am J Hum Genet72:32–47[CrossRef]
    [Google Scholar]
  27. Graur D., Pupko T. 2001; The Permian bacterium that isn’t. Mol Biol Evol18:1143–1146[CrossRef]
    [Google Scholar]
  28. Greer C. E., Peterson S. L., Kiviat N. B., Manos M. M. 1991; PCR amplification from paraffin-embedded tissues. Effects of fixative and fixation time. Am J Clin Pathol95:117–124
    [Google Scholar]
  29. Gutierrez G., Marin A. 1998; The most ancient DNA recovered from an amber-preserved specimen may not be as ancient as it seems. Mol Biol Evol15:926–929[CrossRef]
    [Google Scholar]
  30. Haas C. J., Zink A., Molnar E.. 7 other authors 2000; Molecular evidence for different stages of tuberculosis in ancient bone samples from Hungary. Am J Phys Anthropol113:293–304[CrossRef]
    [Google Scholar]
  31. Handt O., Hoss M., Krings M., Paabo S. 1994; Ancient DNA: methodological challenges. Experientia50:524–529[CrossRef]
    [Google Scholar]
  32. Handt O., Krings M., Ward R., Pääbo S. 1996; The retrieval of ancient human DNA sequences. Am J Hum Genet59:368–376
    [Google Scholar]
  33. Hansen A., Willerslev E., Wiuf C., Mourier T., Arctander P. 2001; Statistical evidence for miscoding lesions in ancient DNA templates. Mol Biol Evol18:262–265[CrossRef]
    [Google Scholar]
  34. Hawkins D. 1990; The Black Death and the new London cemeteries of 1348. Antiquity60:637–642
    [Google Scholar]
  35. Hinnebusch J., Schwan T. G. 1993; New method for plague surveillance using polymerase chain reaction to detect Yersinia pestis in fleas. J Clin Microbiol31:1511–1514
    [Google Scholar]
  36. Hofreiter M., Serre D., Poinar H. N., Kuch M., Pääbo S. 2001; Ancient DNA. Nat Rev Genet2:353–359
    [Google Scholar]
  37. Hoshino E., Naomi A., Michiko S., Kohichi K. 1992; Bacterial invasion of non-exposed dental pulp. Int Endod J25:2–5[CrossRef]
    [Google Scholar]
  38. Höss M., Jaruga P., Zastawny T. H., Dizdaroglu M., Pääbo S. 1996; DNA damage and DNA sequence retrieval from ancient tissues. Nucleic Acids Res24:1304–1307[CrossRef]
    [Google Scholar]
  39. Khan A. S., Sanchez A., Pflieger A. K. 1998; Filoviral haemorrhagic fevers. Br Med Bull54:675–692[CrossRef]
    [Google Scholar]
  40. Kiple K. F. 1993; The Cambridge World History of Human Disease Cambridge: Cambridge University Press;
    [Google Scholar]
  41. Kolman C. J. 1999; Molecular anthropology – progress and perspectives on ancient DNA technology. In Genomic Diversity: Applications in Human Population Genetics Edited by Papiha S. S., Deka R.. New York: Academic/Plenum Publishers;
    [Google Scholar]
  42. Kolman C. J., Tuross N. 2000; Ancient DNA analysis of human populations. Am J Phys Anthropol111:5–23[CrossRef]
    [Google Scholar]
  43. Lynnerup N. 1992; Anthropological Report on Human Remains from Vodroffsgaard, Copenhagen, AS 3/92 . On file at the Laboratory of Biological Anthropology University of Copenhagen; Copenhagen, Denmark:
    [Google Scholar]
  44. Ma L.-J., Rogers S. O., Catranis C. M., Starmer W. T. 1999; Detection and characterization of ancient fungi entrapped in glacial ice. Mycologia92:286–295
    [Google Scholar]
  45. Nerlich A. G., Haas C. J., Zink A., Szeimies U., Hagedorn H. G. 1997; Molecular evidence for tuberculosis in an ancient Egyptian mummy. Lancet350:1404
    [Google Scholar]
  46. Nickle D. C., Learn G. H., Rain M. W., Mullins J. I., Mittler J. E. 2002; Curiously modern DNA from a “250 million-year-old” bacterium. J Mol Evol54:134–137[CrossRef]
    [Google Scholar]
  47. Nielsen-Marsh C., Hedges R. E. M. 2000; Patterns of diagenesis in bone I: effects of site environments. J Archaeol Sci27:1139–1150[CrossRef]
    [Google Scholar]
  48. Oota H., Saitou N., Matsushita T., Ueda S. 1995; A genetic study of 2,000-year-old human remains from Japan using mitochondrial DNA sequences. Am J Phys Anthropol98:133–145[CrossRef]
    [Google Scholar]
  49. Pääbo S. 1989; Ancient DNA: extraction, characterization, molecular cloning, and enzymatic amplification. Proc Natl Acad Sci U S A86:1939–1943[CrossRef]
    [Google Scholar]
  50. Parkhill J., Wren B. W., Thomson N. R.. 32 other authors 2001; Genome sequence of Yersinia pestis , the causative agent of plague. Nature413:523–527[CrossRef]
    [Google Scholar]
  51. Pfeiffer H., Huhne J., Seitz B., Brinkmann B. 1999; Influence of soil storage and exposure period on DNA recovery from teeth. Int J Legal Med112:142–144[CrossRef]
    [Google Scholar]
  52. Rafi A., Spigelman M., Stanford J., Lemma E., Donoghue H., Zias J. 1994; Mycobacterium leprae DNA from ancient bone detected by PCR. Lancet343:1360–1361[CrossRef]
    [Google Scholar]
  53. Raoult D., Drancourt M. 2002; Cause of Black Death. Lancet Infect Dis2:459
    [Google Scholar]
  54. Raoult D., Aboudharam G., Crubezy E., Larrouy G., Ludes B., Drancourt M. 2000; Molecular identification by “suicide PCR” of Yersinia pestis as the agent of medieval black death. Proc Natl Acad Sci U S A97:12800–12803[CrossRef]
    [Google Scholar]
  55. Reid A. H., Fanning T. G., Hultin J. V., Taubenberger J. K. 1999; Origin and evolution of the 1918 “Spanish” influenza virus hemagglutinin gene. Proc Natl Acad Sci U S A96:1651–1656[CrossRef]
    [Google Scholar]
  56. Richards M., Sykes B., Hedges R. 1995; Authenticating DNA extracted from ancient skeletal remains. J Archaeol Sci22:291–299[CrossRef]
    [Google Scholar]
  57. Ringboel Bitsch B. 1991; Archaeological Excavation Report “Vodroffsgaard”, KBM 836 On file at Copenhagen City Museum; Copenhagen, Denmark:
    [Google Scholar]
  58. Rothschild B. M., Martin L. D., Lev G., Bercovier H., Bar-Gal G. K., Greenblatt C., Donoghue H., Spigelman M., Brittain D. 2001; Mycobacterium tuberculosis complex DNA from an extinct bison dated 17,000 years before the present. Clin Infect Dis33:305–311[CrossRef]
    [Google Scholar]
  59. Salo W. L., Aufderheide A. C., Buikstra J., Holcomb T. A. 1994; Identification of Mycobacterium tuberculosis DNA in a pre-Columbian Peruvian mummy. Proc Natl Acad Sci U S A91:2091–2094[CrossRef]
    [Google Scholar]
  60. Scott S., Duncan C. 2001; Biology of Plagues: Evidence from Historical Populations Cambridge: Cambridge University Press;
    [Google Scholar]
  61. Shapiro B., Sibthorpe D., Rambaut A., Austin J., Wragg G. M., Bininda-Emonds O. R. P., Lee P. L. M., Cooper A. 2002; Flight of the dodo. Science295:1683[CrossRef]
    [Google Scholar]
  62. Spigelman M., Matheson C., Lev G., Greenblatt C., Donoghue H. 2002; Confirmation of the presence of Mycobacterium tuberculosis complex-specific DNA in three archaeological specimens. Int J Osteoarch12:393–401[CrossRef]
    [Google Scholar]
  63. Stephens J. C., Reich D. E., Goldstein D. B.. 36 other authors 1998; Dating the origin of the CCR5-Delta32 AIDS-resistance allele by the coalescence of haplotypes. Am J Hum Genet62:1507–1515[CrossRef]
    [Google Scholar]
  64. Taubenberger J. K., Reid A. H., Krafft A. E., Bijwaard K. E., Fanning T. G. 1997; Initial genetic characterization of the 1918 “Spanish” influenza virus. Science275:1793–1796[CrossRef]
    [Google Scholar]
  65. Taylor G., Crossey M., Saldanha J., Waldron T. 1996; DNA from Mycobacterium tuberculosis identified in medieval human skeletal remains using PCR. J Archaeol Sci23:789–799[CrossRef]
    [Google Scholar]
  66. Titball R. W., Williamson E. D. 2001; Vaccination against bubonic and pneumonic plague. Vaccine19:4175–4184[CrossRef]
    [Google Scholar]
  67. Von Kohl C. 1911; Historiske Meddelelser om København. Copenhagen: 1911–12; GEC Gad3:545–614 in Danish
    [Google Scholar]
  68. Vreeland R. H., Rozenwieg W. D., Powers D. W. 2000; Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal. Nature407:897–900[CrossRef]
    [Google Scholar]
  69. Waldron H. 2001; Are plague pits of particular use to palaeoepidemiologists?. Int J Epidemiol30:104–108[CrossRef]
    [Google Scholar]
  70. Willerslev E., Hansen A. J., Christensen B., Steffensen J. P., Arctander A. 1999; Diversity of Holocene life forms in fossil glacier ice. Proc Natl Acad Sci U S A96:8017–8021[CrossRef]
    [Google Scholar]
  71. WHO 1999; Plague Manual: Epidemiology, Distribution, Surveillance and Control Geneva: World Health Organization;http://www.who.int/csr/resources/publications/plague/WHO_CDS_CSR_EDC_99_2_EN/en
    [Google Scholar]
  72. Yersin A. 1894; La peste bubonique à Hong Kong. Ann Inst Pasteur (Paris)8:662–667
    [Google Scholar]
  73. Zhang L., Cui A., Schmitt K., Hubert R., Navidi W., Amheim N. 1992; Whole genome amplification from a single cell: implications for genetic analysis. Proc Natl Acad Sci U S A89:5847–5851[CrossRef]
    [Google Scholar]
  74. Zink A., Haas C. J., Reischl U., Szeimies U., Nerlich A. G. 2001; Molecular analysis of skeletal tuberculosis in an ancient Egyptian population. J Med Microbiol50:355–366
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26594-0
Loading
/content/journal/micro/10.1099/mic.0.26594-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error