1887

Abstract

A Tn mutant library was generated to identify genes involved in the biogenesis of fimbriae. A fimbria-deficient mutant was isolated by negative selection using an immunomagnetic separation technique with specific anti-fimbriae polyclonal antibodies (pAbs). The transposon was inserted in an ORF, called , which encoded a protein of unknown function. The transposon prevented the transcription of as well as two genes located downstream, which are designated and and which form the operon. Sequence analyses of CspA and CspB revealed that both proteins possessed the classic cell-wall-anchoring motif (LPXTG) of Gram-positive bacterial surface proteins. Recombinant CspA (rCspA) and CspB (rCspB) proteins were generated in and used to produce pAbs. Immunolocalization experiments showed that anti-rCspB, but not anti-rCspA antibodies specifically recognized fimbriae. Our results suggested that the operon encoded predicted cell-surface proteins, one of which, CspB, was associated with the fimbriae.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26592-0
2004-01-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/1/mic1500189.html?itemId=/content/journal/micro/10.1099/mic.0.26592-0&mimeType=html&fmt=ahah

References

  1. Bidnenko, V., Ehrlich, S. D. & Jannière, L. ( 1998; ). In vivo relations between pAMbeta1-encoded type I topoisomerase and plasmid replication. Mol Microbiol 28, 1005–1016.[CrossRef]
    [Google Scholar]
  2. Brochu, D., Trahan, L., Jacques, M., Lavoie, M. C., Frenette, M. & Vadeboncoeur, C. (1993).; Alterations in the cellular envelope of spontaneous -defective mutants of Streptococcus salivarius. J'Gen Microbiol 139, 1291–1300.[CrossRef]
    [Google Scholar]
  3. Brown, N. L. & Evans, L. R. ( 1991; ). Transposition in prokaryotes: transposon Tn501. Res Microbiol 142, 689–700.[CrossRef]
    [Google Scholar]
  4. Buckley, N. D., Vadeboncoeur, C., Leblanc, D. J., Lee, L. N. & Frenette, M. ( 1999; ). An effective strategy, applicable to Streptococcus salivarius and related bacteria, to enhance or confer electroporation competence. Appl Environ Microbiol 65, 3800–3804.
    [Google Scholar]
  5. Devereux, J., Haeberli, P. & Smithies, O. ( 1984; ). A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12, 387–395.[CrossRef]
    [Google Scholar]
  6. Fernández, L. A. & Berenguer, J. ( 2000; ). Secretion and assembly of regular surface structures in Gram-negative bacteria. FEMS Microbiol Rev 24, 21–44.[CrossRef]
    [Google Scholar]
  7. Fischetti, V. A. ( 2000; ). Surface proteins on Gram-positive bacteria. In Gram-Positive Pathogens, pp. 11–24. Edited by V. A. Fischetti, R. P. Novick, J. J. Ferretti, D. A. Portnoy & J. I. Rood. Washington, DC: American Society for Microbiology.
  8. Fischetti, V. A., Pancholi, V. & Schneewind, O. ( 1990; ). Conservation of a hexapeptide sequence in the anchor region of surface proteins from Gram-positive cocci. Mol Microbiol 4, 1603–1605.[CrossRef]
    [Google Scholar]
  9. Gauthier, L., Bourassa, S., Brochu, D. & Vadeboncoeur, C. ( 1990; ). Control of sugar utilization in oral streptococci. Properties of phenotypically distinct 2-deoxyglucose-resistant mutants of Streptococcus salivarius. Oral Microbiol Immunol 5, 352–359.[CrossRef]
    [Google Scholar]
  10. Gutierrez, J. A., Crowley, P. J., Brown, D. P., Hillman, J. D., Youngman, P. & Bleiweis, A. S. ( 1996; ). Insertional mutagenesis and recovery of interrupted genes of Streptococcus mutans by using transposon Tn917: preliminary characterization of mutants displaying acid sensitivity and nutritional requirements. J Bacteriol 178, 4166–4175.
    [Google Scholar]
  11. Hamada, S., Amano, A., Kimura, S., Nakagawa, I., Kawabata, S. & Morisaki, I. ( 1998; ). The importance of fimbriae in the virulence and ecology of some oral bacteria. Oral Microbiol Immunol 13, 129–138.[CrossRef]
    [Google Scholar]
  12. Handley, P. S., Carter, P. L. & Fielding, J. ( 1984; ). Streptococcus salivarius strains carry either fibrils or fimbriae on the cell surface. J Bacteriol 157, 64–72.
    [Google Scholar]
  13. Handley, P. S., McNab, R. & Jenkinson, H. F. ( 1999; ). Adhesive surface structures on oral bacteria. In Dental Plaque Revisited. Oral Biofilms in Health and Disease, pp. 145–170. Edited by H. N. Newman & M. Wilson. London: Eastman Dental Institute.
  14. Heffron, F. ( 1983; ). Tn3 and its relatives. In Mobile Genetic Elements, pp. 223–260. Edited by J. A. Shapiro. London: Academic Press
  15. Jenkinson, H. F. ( 1994; ). Cell surface protein receptors in oral streptococci. FEMS Microbiol Lett 121, 133–140.[CrossRef]
    [Google Scholar]
  16. Jenkinson, H. F. & Demuth, D. R. ( 1997; ). Structure, function and immunogenicity of streptococcal antigen I/II polypeptides. Mol Microbiol 23, 183–190.[CrossRef]
    [Google Scholar]
  17. Jenkinson, H. F. & Lamont, R. J. ( 1997; ). Streptococcal adhesion and colonization. Crit Rev Oral Biol Med 8, 175–200.[CrossRef]
    [Google Scholar]
  18. Klemm, P. & Krogfelt, K. A. ( 1994; ). Type 1 fimbriae of Escherichia coli. In Fimbriae, Adhesion, Genetics, Biogenesis and Vaccines, pp. 9–26. Edited by P. Klemm. Boca Raton, FL: CRC Press.
  19. Klemm, P. & Schembri, M. A. ( 2000; ). Bacterial adhesins: function and structure. Int J Med Microbiol 290, 27–35.[CrossRef]
    [Google Scholar]
  20. Krogfelt, K. A. & Klemm, P. ( 1988; ). Investigation of minor components of Escherichia coli type 1 fimbriae: protein chemical and immunological aspects. Microb Pathog 4, 231–238.[CrossRef]
    [Google Scholar]
  21. Kunst, F., Ogasawara, N., Moszer, I. & 149 other authors ( 1997; ). The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature 390, 249–256.[CrossRef]
    [Google Scholar]
  22. Laemmli, K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.[CrossRef]
    [Google Scholar]
  23. Lamont, R. J. & Jenkinson, H. F. ( 2000; ). Adhesion as an ecological determinant in the oral cavity. In Oral Bacterial Ecology: the Molecular Basis, pp. 131–168. Edited by H. K. Kuramitsu & R. P. Ellen. Wymondham: Horizon Scientific Press.
  24. Lévesque, C., Vadeboncoeur, C., Chandad, F. & Frenette, M. ( 2001; ). Streptococcus salivarius fimbriae are composed of a glycoprotein containing a repeated motif assembled into a filamentous non-dissociable structure. J Bacteriol 183, 2724–2732.[CrossRef]
    [Google Scholar]
  25. Lévesque, C., Lamothe, J. & Frenette, M. ( 2003; ). Coaggregation of Streptococcus salivarius with periodontopathogens: evidence for involvement of fimbriae in the interaction with Prevotella intermedia. Oral Microbiol Immunol 18, 333–337.[CrossRef]
    [Google Scholar]
  26. Lisser, S. & Margalit, H. ( 1993; ). Compilation of Escherichia coli mRNA promoter sequences. Nucleic Acids Res 21, 1507–1516.[CrossRef]
    [Google Scholar]
  27. Lortie, L.-A., Pelletier, M., Vadeboncoeur, C. & Frenette, M. ( 2000; ). The gene encoding in Streptococcus salivarius is part of a tetracistronic operon encoding a phosphoenolpyruvate : mannose/glucose phosphotransferase system. Microbiology 146, 677–685.
    [Google Scholar]
  28. Low, D., Braaten, B. & Van der Woude, M. ( 1996; ). Fimbriae. In Escherichia Coli and Salmonella. Cellular and Molecular Biology, pp. 146–157. Edited by F. C. Neidhardt. Washington, DC: American Society for Microbiology.
  29. Marciset, O. & Mollet, B. ( 1994; ). Multifactorial experimental designs for optimizing transformation: electroporation of Streptococcus thermophilus. Biotechnol Bioeng 43, 490–496.[CrossRef]
    [Google Scholar]
  30. Mol, O. & Oudega, B. ( 1996; ). Molecular and structural aspects of fimbriae biosynthesis and assembly in Escherichia coli. FEMS Microbiol Rev 19, 25–52.[CrossRef]
    [Google Scholar]
  31. Navarre, W. W. & Schneewind, O. ( 1994; ). Proteolytic cleavage and cell wall anchoring at the LPXTG motif of surface proteins in Gram-positive bacteria. Mol Microbiol 14, 115–121.[CrossRef]
    [Google Scholar]
  32. Navarre, W. W. & Schneewind, O. ( 1999; ). Surface proteins of Gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev 63, 174–229.
    [Google Scholar]
  33. Perna, N. T., Plunkett, G., III, Burland, V. & 25 other authors ( 2001; ). Genome sequence of enterohaemorrhagic Escherichia coli O157 : H7. Nature 409, 529–533.[CrossRef]
    [Google Scholar]
  34. Rathsam, C. & Jacques, N. A. ( 1998; ). Role of C-terminal domains in surface attachment of the fructosyltransferase of Streptococcus salivarius ATCC 25975. J Bacteriol 180, 6400–6403.
    [Google Scholar]
  35. Rathsam, C., Giffard, P. M. & Jacques, N. A. ( 1993; ). The cell-bound fructosyltransferase of Streptococcus salivarius: the carboxyl terminus specifies attachment in a Streptococcus gordonii model system. J Bacteriol 175, 4520–4527.
    [Google Scholar]
  36. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  37. Schneewind, O., Fowler, A. & Faull, K. F. ( 1995; ). Structure of the cell wall anchor of surface proteins in Staphylococcus aureus. Science 268, 103–106.[CrossRef]
    [Google Scholar]
  38. Shaw, J. H. & Clewell, D. B. ( 1985; ). Complete nucleotide sequence of macrolide-lincosamide-streptogramin B-resistance transposon Tn917 in Streptococcus faecalis. J Bacteriol 164, 782–796.
    [Google Scholar]
  39. Soto, G. E. & Hultgren, S. J. ( 1999; ). Bacterial adhesins: common themes and variations in architecture and assembly. J Bacteriol 181, 1059–1071.
    [Google Scholar]
  40. Tettelin, H., Masignani, V., Cieslewicz, M. J. & 40 other authors ( 2002; ). Complete genome sequence and comparative genomic analysis of an emerging human pathogen, serotype V Streptococcus agalactiae. Proc Natl Acad Sci U S A 99, 12391–12396.[CrossRef]
    [Google Scholar]
  41. Thanassi, D. G. & Hultgren, S. J. ( 2000; ). Assembly of complex organelles: pilus biogenesis in Gram-negative bacteria as a model system. Methods 20, 111–126.[CrossRef]
    [Google Scholar]
  42. Ton-That, H. & Schneewind, O. ( 2003; ). Fimbrial assembly in Corynebacterium diphtheriae. ASM 103rd General Meeting, Washington, DC, Abstract B-098.
  43. Voskuil, M. I. & Chambliss, G. H. ( 1998; ). The −16 region of Bacillus subtilis and other Gram-positive bacterial promoters. Nucleic Acids Res 26, 3584–3590.[CrossRef]
    [Google Scholar]
  44. Weaver, K. E. ( 2000; ). Enterococcal genetics. In Gram-Positive Pathogens, pp. 259–271. Edited by V. A. Fischetti, R. P. Novick, J. J. Ferretti, D. A. Portnoy & J. I. Rood. Washington, DC: American Society for Microbiology.
  45. Wu, H. & Fives-Taylor, P. M. ( 2001; ). Molecular strategies for fimbrial expression and assembly. Crit Rev Oral Med 12, 101–115.[CrossRef]
    [Google Scholar]
  46. Yeung, M. K. ( 2000; ). Actinomyces: surface macromolecules and bacteria–host interactions. In Gram-Positive Pathogens, pp. 583–593. Edited by V. A. Fischetti, R. P. Novick, J. J. Ferretti, D. A. Portnoy & J. I. Rood. Washington, DC: American Society for Microbiology.
  47. Yeung, M. K. & Ragsdale, P. A. ( 1997; ). Synthesis and function of Actinomyces naeslundii T14V type 1 fimbriae require the expression of additional fimbria-associated genes. Infect Immun 65, 2629–2639.
    [Google Scholar]
  48. Yeung, M. K., Donkersloot, J. A., Cisar, J. O. & Ragsdale, P. A. ( 1998; ). Identification of a gene involved in assembly of Actinomyces naeslundii T14V type 2 fimbriae. Infect Immun 66, 1482–1491.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26592-0
Loading
/content/journal/micro/10.1099/mic.0.26592-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error