1887

Abstract

Archaea are best known in their capacities as extremophiles, i.e. micro-organisms able to thrive in some of the most drastic environments on Earth. The protein-based surface layer that envelopes many archaeal strains must thus correctly assemble and maintain its structural integrity in the face of the physical challenges associated with, for instance, life in high salinity, at elevated temperatures or in acidic surroundings. Study of archaeal surface-layer (glyco)proteins has thus offered insight into the strategies employed by these proteins to survive direct contact with extreme environments, yet has also served to elucidate other aspects of archaeal protein biosynthesis, including glycosylation, lipid modification and protein export. In this mini-review, recent advances in the study of archaeal surface-layer (glyco)proteins are discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26591-0
2003-12-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/12/mic1493347.html?itemId=/content/journal/micro/10.1099/mic.0.26591-0&mimeType=html&fmt=ahah

References

  1. Akça, E., Claus, H., Schultz, N., Karbach, G., Schlott, B., Debaerdemaeker, T., Declercq, J. P. & König, H. ( 2002; ). Genes and derived amino acid sequences of S-layer proteins from mesophilic, thermophilic, and extremely thermophilic methanococci. Extremophiles 6, 351–358.[CrossRef]
    [Google Scholar]
  2. Bardy, S. L., Eichler, J. & Jarrell, K. F. ( 2003; ). Archaeal signal peptides – a comparative survey at the genome level. Protein Sci 12, 1833–1843.[CrossRef]
    [Google Scholar]
  3. Bröckl, G., Behr, M., Fabry, S., Hensel, R., Kaudewitz, H., Biendl, E. & König, H. ( 1991; ). Analysis and nucleotide sequence of the genes encoding the surface-layer glycoproteins of the hyperthermophilic methanogens Methanothermus fervidus and Methanothermus sociabilis. Eur J Biochem 199, 147–152.[CrossRef]
    [Google Scholar]
  4. Cambillau, C. & Claverie, J. M. ( 2000; ). Structural and genomic correlates of hyperthermostability. J Biol Chem 275, 32383–32386.[CrossRef]
    [Google Scholar]
  5. Claus, H., Akça, E., Debaerdemaeker, T., Evrard, C., Declercq, J. P. & König, H. ( 2002; ). Primary structure of selected archaeal mesophilic and extremely thermophilic outer surface layer proteins. Syst Appl Microbiol 25, 3–12.[CrossRef]
    [Google Scholar]
  6. Das, R. & Gerstein, M. ( 2000; ). The stability of thermophilic proteins: a study based on comprehensive genome comparison. Funct Integr Genomics 1, 76–88.[CrossRef]
    [Google Scholar]
  7. Dharmavaram, R., Gillevet, P. & Konisky, J. ( 1991; ). Nucleotide sequence of the gene encoding the vanadate-sensitive membrane-associated ATPase of Methanococcus voltae. J Bacteriol 173, 2131–2133.
    [Google Scholar]
  8. Eichler, J. ( 2001; ). Post-translational modification unrelated to protein glycosylation follows translocation of the S-layer glycoprotein across the plasma membrane of the haloarchaeon Haloferax volcanii. Eur J Biochem 268, 4366–4373.[CrossRef]
    [Google Scholar]
  9. Elbein, A. D. ( 1981; ). The tunicamycins: useful tools for studies on glycoproteins. Trends Biochem Sci 6, 219–221.[CrossRef]
    [Google Scholar]
  10. Fukuchi, S., Yoshimune, K., Wakayama, M., Moriguchi, M. & Nishikawa, K. ( 2003; ). Unique amino acid composition of proteins in halophilic bacteria. J Mol Biol 327, 347–357.[CrossRef]
    [Google Scholar]
  11. Grogan, D. W. ( 1989; ). Phenotypic characterization of the archaebacterial genus Sulfolobus: comparison of five wild-type strains. J Bacteriol 171, 6710–6719.
    [Google Scholar]
  12. Grogan, D. W. ( 1996; ). Organization and interactions of cell envelope proteins of the extreme thermoacidophile Sulfolobus acidocaldarius. Can J Microbiol 42, 1163–1171.[CrossRef]
    [Google Scholar]
  13. Irihimovitch, V. & Eichler, J. ( 2003; ). Post-translational secretion of fusion proteins in the halophilic archaeon Haloferax volcanii. J Biol Chem 278, 12881–12887.[CrossRef]
    [Google Scholar]
  14. Kärcher, U., Schröder, H., Haslinger, E., Allmaier, G., Schreiner, R., Wieland, F., Haselbeck, A. & König, H. ( 1993; ). Primary structure of the heterosaccharide of the surface glycoprotein of Methanothermus fervidus. J Biol Chem 268, 26821–26826.
    [Google Scholar]
  15. Kessel, M., Wildhaber, I., Cohen, S. & Baumeister, W. ( 1988; ). Three-dimensional structure of the regular surface glycoprotein layer of Halobacterium volcanii from the Dead Sea. EMBO J 7, 1549–1554.
    [Google Scholar]
  16. Kikuchi, A., Sagami, H. & Ogura, K. ( 1999; ). Evidence for covalent attachment of diphytanylglyceryl phosphate to the cell-surface glycoprotein of Halobacterium halobium. J Biol Chem 274, 18011–18016.[CrossRef]
    [Google Scholar]
  17. Konisky, J., Lynn, D., Hoppert, M., Mayer, F. & Haney, P. ( 1994; ). Identification of the Methanococcus voltae S-layer structural gene. J Bacteriol 176, 1790–1792.
    [Google Scholar]
  18. Konrad, Z. & Eichler, J. ( 2002; ). Lipid modification of proteins in Archaea: attachment of a mevalonic acid-based lipid moiety to the S-layer glycoprotein of Haloferax volcanii follows protein translocation. Biochem J 366, 959–964.
    [Google Scholar]
  19. Kornfeld, R. & Kornfeld, S. ( 1985; ). Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem 54, 631–664.[CrossRef]
    [Google Scholar]
  20. Kuntz, C., Sonnenbichler, J., Sonnenbichler, I., Sumper, M. & Zeitler, R. ( 1997; ). Isolation and characterization of dolichol-linked oligosaccharides from Haloferax volcanii. Glycobiology 7, 897–904.[CrossRef]
    [Google Scholar]
  21. Lechner, J. & Sumper, M. ( 1987; ). The primary structure of a procaryotic glycoprotein. Cloning and sequencing of the cell surface glycoprotein gene of halobacteria. J Biol Chem 262, 9724–9729.
    [Google Scholar]
  22. Lechner, J. & Wieland, F. ( 1989; ). Structure and biosynthesis of prokaryotic glycoproteins. Annu Rev Biochem 58, 173–194.[CrossRef]
    [Google Scholar]
  23. Madern, D., Ebel, C. & Zaccai, G. ( 2000; ). Halophilic adaptation of enzymes. Extremophiles 4, 91–98.[CrossRef]
    [Google Scholar]
  24. Mayerhofer, L. E., Conway de Macario, E., Yao, R. & Macario, A. J. ( 1998; ). Structure, organization, and expression of genes coding for envelope components in the archaeon Methanosarcina mazei S-6. Arch Microbiol 169, 339–345.[CrossRef]
    [Google Scholar]
  25. Mayr, J., Lupas, A., Kellermann, J., Eckerskorn, C., Baumeister, W. & Peters, J. ( 1996; ). A hyperthermostable protease of the subtilisin family bound to the surface layer of the archaeon Staphylothermus marinus. Curr Biol 6, 739–749.[CrossRef]
    [Google Scholar]
  26. Mengele, R. & Sumper, M. ( 1992; ). Drastic differences in glycosylation of related S-layer glycoproteins from moderate and extreme halophiles. J Biol Chem 267, 8182–8185.
    [Google Scholar]
  27. Mescher, M. F. & Strominger, J. L. ( 1976; ). Structural (shape-maintaining) role of the cell surface glycoprotein of Halobacterium salinarium. Proc Natl Acad Sci U S A 73, 2687–2691.[CrossRef]
    [Google Scholar]
  28. Messner, P. ( 1997; ). Bacterial glycoproteins. Glycoconj J 14, 3–11.[CrossRef]
    [Google Scholar]
  29. Messner, P. & Schäffer, C. ( 2003; ). Prokaryotic glycoproteins. In Progress in the Chemistry of Organic Natural Products, vol. 85, pp. 51–124. Edited by W. Herz, H. Falk & G. W. Kirby. Wien: Springer.
  30. Moens, S. & Vanderleyden, J. ( 1997; ). Glycoproteins in prokaryotes. Arch Microbiol 168, 169–175.[CrossRef]
    [Google Scholar]
  31. Ng, S. Y. & Jarrell, K. F. ( 2003; ). Cloning and characterization of archaeal type I signal peptidase from Methanococcus voltae. J Bacteriol 185, 5936–5942.[CrossRef]
    [Google Scholar]
  32. Nielsen, H., Brunak, S. & von Heijne, G. ( 1999; ). Machine learning approaches for the prediction of signal peptides and other learning sorting signals. Protein Eng 12, 3–9.[CrossRef]
    [Google Scholar]
  33. Peters, J., Nitsch, M., Kühlmorgen, B. & 10 other authors ( 1995; ). Tetrabrachion: a filamentous archaebacterial surface protein assembly of unusual structure and extreme stability. J Mol Biol 245, 385–401.[CrossRef]
    [Google Scholar]
  34. Pum, D., Messner, P. & Sleytr, U. B. ( 1991; ). Role of the S layer in morphogenesis and cell division of the archaebacterium Methanocorpusculum sinense. J Bacteriol 173, 6865–6873.
    [Google Scholar]
  35. Rosenshine, I., Tchelet, R. & Mevarech, M. ( 1989; ). The mechanism of DNA transfer in the mating system of an archaebacterium. Science 245, 1387–1389.[CrossRef]
    [Google Scholar]
  36. Sára, M. & Sleytr, U. B. ( 2000; ). S-layer proteins. J Bacteriol 182, 859–868.[CrossRef]
    [Google Scholar]
  37. Schäffer, C. & Messner, P. ( 2001; ). Glycobiology of surface layer proteins. Biochimie 83, 591–599.[CrossRef]
    [Google Scholar]
  38. Schleper, C., Holz, I., Janekovic, D., Murphy, J. & Zillig, W. ( 1995; ). A multicopy plasmid of the extremely thermophilic archaeon Sulfolobus effects its transfer to recipients by mating. J Bacteriol 177, 4417–4426.
    [Google Scholar]
  39. Sumper, M. & Wieland, F. T. ( 1995; ). Bacterial glycoproteins. In Glycoproteins, pp. 455–473. Edited by J. Montreuil, J. F. G. Vliegenthart & H. Schachter. Amsterdam: Elsevier.
  40. Sumper, M., Berg, E., Mengele, R. & Strobel, I. ( 1990; ). Primary structure and glycosylation of the S-layer protein of Haloferax volcanii. J Bacteriol 172, 7111–7118.
    [Google Scholar]
  41. Trachtenberg, S., Pinnick, B. & Kessel, M. ( 2000; ). The cell surface glycoprotein layer of the extreme halophile Halobacterium salinarum and its relation to Haloferax volcanii: cryo-electron tomography of freeze-substituted cells and projection studies of negatively stained envelopes. J Struct Biol 130, 10–26.[CrossRef]
    [Google Scholar]
  42. Wakai, H., Nakamura, S., Kawasaki, H., Takada, K., Mizutani, S., Aono, R. & Horikoshi, K. ( 1997; ). Cloning and sequencing of the gene encoding the cell surface glycoprotein of Haloarcula japonica strain TR-1. Extremophiles 1, 29–35.[CrossRef]
    [Google Scholar]
  43. Wang, J., Maziarz, K. & Ratnam, M. ( 1999; ). Recognition of the carboxyl-terminal signal for GPI modification requires translocation of its hydrophobic domain across the ER membrane. J Mol Biol 286, 1303–1310.[CrossRef]
    [Google Scholar]
  44. Wieland, F., Lechner, J., Bernhardt, G. & Sumper, M. ( 1981; ). Halobacterial glycoprotein saccharides contain covalently-linked sulphate. FEBS Lett 132, 319–323.[CrossRef]
    [Google Scholar]
  45. Zeitler, R., Hochmuth, E., Deutzmann, R. & Sumper, M. ( 1998; ). Exchange of Ser-4 for Val, Leu or Asn in the sequon Asn-Ala-Ser does not prevent N-glycosylation of the cell surface glycoprotein from Halobacterium halobium. Glycobiology 8, 1157–1164.
    [Google Scholar]
  46. Zhu, C. R., Drake, R. R., Schweingruber, H. & Laine, R. A. ( 1995; ). Inhibition of glycosylation by amphomycin and sugar nucleotide analogs PP36 and PP55 indicates that Haloferax volcanii β-glycosylates both glycoproteins and glycolipids through lipid-linked sugar intermediates. Arch Biochem Biophys 319, 355–364.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26591-0
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error