1887

Abstract

Archaea are best known in their capacities as extremophiles, i.e. micro-organisms able to thrive in some of the most drastic environments on Earth. The protein-based surface layer that envelopes many archaeal strains must thus correctly assemble and maintain its structural integrity in the face of the physical challenges associated with, for instance, life in high salinity, at elevated temperatures or in acidic surroundings. Study of archaeal surface-layer (glyco)proteins has thus offered insight into the strategies employed by these proteins to survive direct contact with extreme environments, yet has also served to elucidate other aspects of archaeal protein biosynthesis, including glycosylation, lipid modification and protein export. In this mini-review, recent advances in the study of archaeal surface-layer (glyco)proteins are discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26591-0
2003-12-01
2020-04-02
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/12/mic1493347.html?itemId=/content/journal/micro/10.1099/mic.0.26591-0&mimeType=html&fmt=ahah

References

  1. Akça E., Claus H., Schultz N., Karbach G., Schlott B., Debaerdemaeker T., Declercq J. P., König H.. 2002; Genes and derived amino acid sequences of S-layer proteins from mesophilic, thermophilic, and extremely thermophilic methanococci. Extremophiles6:351–358
    [Google Scholar]
  2. Bardy S. L., Eichler J., Jarrell K. F.. 2003; Archaeal signal peptides – a comparative survey at the genome level. Protein Sci12:1833–1843
    [Google Scholar]
  3. Bröckl G., Behr M., Fabry S., Hensel R., Kaudewitz H., Biendl E., König H.. 1991; Analysis and nucleotide sequence of the genes encoding the surface-layer glycoproteins of the hyperthermophilic methanogens Methanothermus fervidus and Methanothermus sociabilis . Eur J Biochem199:147–152
    [Google Scholar]
  4. Cambillau C., Claverie J. M.. 2000; Structural and genomic correlates of hyperthermostability. J Biol Chem275:32383–32386
    [Google Scholar]
  5. Claus H., Akça E., Debaerdemaeker T., Evrard C., Declercq J. P., König H.. 2002; Primary structure of selected archaeal mesophilic and extremely thermophilic outer surface layer proteins. Syst Appl Microbiol25:3–12
    [Google Scholar]
  6. Das R., Gerstein M.. 2000; The stability of thermophilic proteins: a study based on comprehensive genome comparison. Funct Integr Genomics1:76–88
    [Google Scholar]
  7. Dharmavaram R., Gillevet P., Konisky J.. 1991; Nucleotide sequence of the gene encoding the vanadate-sensitive membrane-associated ATPase of Methanococcus voltae . J Bacteriol173:2131–2133
    [Google Scholar]
  8. Eichler J.. 2001; Post-translational modification unrelated to protein glycosylation follows translocation of the S-layer glycoprotein across the plasma membrane of the haloarchaeon Haloferax volcanii . Eur J Biochem268:4366–4373
    [Google Scholar]
  9. Elbein A. D.. 1981; The tunicamycins: useful tools for studies on glycoproteins. Trends Biochem Sci6:219–221
    [Google Scholar]
  10. Fukuchi S., Yoshimune K., Wakayama M., Moriguchi M., Nishikawa K.. 2003; Unique amino acid composition of proteins in halophilic bacteria. J Mol Biol327:347–357
    [Google Scholar]
  11. Grogan D. W.. 1989; Phenotypic characterization of the archaebacterial genus Sulfolobus : comparison of five wild-type strains. J Bacteriol171:6710–6719
    [Google Scholar]
  12. Grogan D. W.. 1996; Organization and interactions of cell envelope proteins of the extreme thermoacidophile Sulfolobus acidocaldarius . Can J Microbiol42:1163–1171
    [Google Scholar]
  13. Irihimovitch V., Eichler J.. 2003; Post-translational secretion of fusion proteins in the halophilic archaeon Haloferax volcanii . J Biol Chem278:12881–12887
    [Google Scholar]
  14. Kärcher U., Schröder H., Haslinger E., Allmaier G., Schreiner R., Wieland F., Haselbeck A., König H.. 1993; Primary structure of the heterosaccharide of the surface glycoprotein of Methanothermus fervidus . J Biol Chem268:26821–26826
    [Google Scholar]
  15. Kessel M., Wildhaber I., Cohen S., Baumeister W.. 1988; Three-dimensional structure of the regular surface glycoprotein layer of Halobacterium volcanii from the Dead Sea. EMBO J7:1549–1554
    [Google Scholar]
  16. Kikuchi A., Sagami H., Ogura K.. 1999; Evidence for covalent attachment of diphytanylglyceryl phosphate to the cell-surface glycoprotein of Halobacterium halobium . J Biol Chem274:18011–18016
    [Google Scholar]
  17. Konisky J., Lynn D., Hoppert M., Mayer F., Haney P.. 1994; Identification of the Methanococcus voltae S-layer structural gene. J Bacteriol176:1790–1792
    [Google Scholar]
  18. Konrad Z., Eichler J.. 2002; Lipid modification of proteins in Archaea: attachment of a mevalonic acid-based lipid moiety to the S-layer glycoprotein of Haloferax volcanii follows protein translocation. Biochem J366:959–964
    [Google Scholar]
  19. Kornfeld R., Kornfeld S.. 1985; Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem54:631–664
    [Google Scholar]
  20. Kuntz C., Sonnenbichler J., Sonnenbichler I., Sumper M., Zeitler R.. 1997; Isolation and characterization of dolichol-linked oligosaccharides from Haloferax volcanii . Glycobiology7:897–904
    [Google Scholar]
  21. Lechner J., Sumper M.. 1987; The primary structure of a procaryotic glycoprotein. Cloning and sequencing of the cell surface glycoprotein gene of halobacteria. J Biol Chem262:9724–9729
    [Google Scholar]
  22. Lechner J., Wieland F.. 1989; Structure and biosynthesis of prokaryotic glycoproteins. Annu Rev Biochem58:173–194
    [Google Scholar]
  23. Madern D., Ebel C., Zaccai G.. 2000; Halophilic adaptation of enzymes. Extremophiles4:91–98
    [Google Scholar]
  24. Mayerhofer L. E., Conway de Macario E., Yao R., Macario A. J.. 1998; Structure, organization, and expression of genes coding for envelope components in the archaeon Methanosarcina mazei S-6. Arch Microbiol169:339–345
    [Google Scholar]
  25. Mayr J., Lupas A., Kellermann J., Eckerskorn C., Baumeister W., Peters J.. 1996; A hyperthermostable protease of the subtilisin family bound to the surface layer of the archaeon Staphylothermus marinus . Curr Biol6:739–749
    [Google Scholar]
  26. Mengele R., Sumper M.. 1992; Drastic differences in glycosylation of related S-layer glycoproteins from moderate and extreme halophiles. J Biol Chem267:8182–8185
    [Google Scholar]
  27. Mescher M. F., Strominger J. L.. 1976; Structural (shape-maintaining) role of the cell surface glycoprotein of Halobacterium salinarium . Proc Natl Acad Sci U S A73:2687–2691
    [Google Scholar]
  28. Messner P.. 1997; Bacterial glycoproteins. Glycoconj J14:3–11
    [Google Scholar]
  29. Messner P., Schäffer C.. 2003; Prokaryotic glycoproteins. In Progress in the Chemistry of Organic Natural Products vol. 85 pp51–124 Edited by Herz W., Falk H., Kirby G. W.. Wien: Springer;
  30. Moens S., Vanderleyden J.. 1997; Glycoproteins in prokaryotes. Arch Microbiol168:169–175
    [Google Scholar]
  31. Ng S. Y., Jarrell K. F.. 2003; Cloning and characterization of archaeal type I signal peptidase from Methanococcus voltae . J Bacteriol185:5936–5942
    [Google Scholar]
  32. Nielsen H., Brunak S., von Heijne G.. 1999; Machine learning approaches for the prediction of signal peptides and other learning sorting signals. Protein Eng12:3–9
    [Google Scholar]
  33. Peters J., Nitsch M., Kühlmorgen B.. 10 other authors 1995; Tetrabrachion: a filamentous archaebacterial surface protein assembly of unusual structure and extreme stability. J Mol Biol245:385–401
    [Google Scholar]
  34. Pum D., Messner P., Sleytr U. B.. 1991; Role of the S layer in morphogenesis and cell division of the archaebacterium Methanocorpusculum sinense . J Bacteriol173:6865–6873
    [Google Scholar]
  35. Rosenshine I., Tchelet R., Mevarech M.. 1989; The mechanism of DNA transfer in the mating system of an archaebacterium. Science245:1387–1389
    [Google Scholar]
  36. Sára M., Sleytr U. B.. 2000; S-layer proteins. J Bacteriol182:859–868
    [Google Scholar]
  37. Schäffer C., Messner P.. 2001; Glycobiology of surface layer proteins. Biochimie83:591–599
    [Google Scholar]
  38. Schleper C., Holz I., Janekovic D., Murphy J., Zillig W.. 1995; A multicopy plasmid of the extremely thermophilic archaeon Sulfolobus effects its transfer to recipients by mating. J Bacteriol177:4417–4426
    [Google Scholar]
  39. Sumper M., Wieland F. T.. 1995; Bacterial glycoproteins. In Glycoproteins pp455–473 Edited by Montreuil J., Vliegenthart J. F. G., Schachter H. Amsterdam: Elsevier;
  40. Sumper M., Berg E., Mengele R., Strobel I.. 1990; Primary structure and glycosylation of the S-layer protein of Haloferax volcanii . J Bacteriol172:7111–7118
    [Google Scholar]
  41. Trachtenberg S., Pinnick B., Kessel M.. 2000; The cell surface glycoprotein layer of the extreme halophile Halobacterium salinarum and its relation to Haloferax volcanii : cryo-electron tomography of freeze-substituted cells and projection studies of negatively stained envelopes. J Struct Biol130:10–26
    [Google Scholar]
  42. Wakai H., Nakamura S., Kawasaki H., Takada K., Mizutani S., Aono R., Horikoshi K.. 1997; Cloning and sequencing of the gene encoding the cell surface glycoprotein of Haloarcula japonica strain TR-1. Extremophiles1:29–35
    [Google Scholar]
  43. Wang J., Maziarz K., Ratnam M.. 1999; Recognition of the carboxyl-terminal signal for GPI modification requires translocation of its hydrophobic domain across the ER membrane. J Mol Biol286:1303–1310
    [Google Scholar]
  44. Wieland F., Lechner J., Bernhardt G., Sumper M.. 1981; Halobacterial glycoprotein saccharides contain covalently-linked sulphate. FEBS Lett132:319–323
    [Google Scholar]
  45. Zeitler R., Hochmuth E., Deutzmann R., Sumper M.. 1998; Exchange of Ser-4 for Val, Leu or Asn in the sequon Asn-Ala-Ser does not prevent N-glycosylation of the cell surface glycoprotein from Halobacterium halobium . Glycobiology8:1157–1164
    [Google Scholar]
  46. Zhu C. R., Drake R. R., Schweingruber H., Laine R. A.. 1995; Inhibition of glycosylation by amphomycin and sugar nucleotide analogs PP36 and PP55 indicates that Haloferax volcanii β -glycosylates both glycoproteins and glycolipids through lipid-linked sugar intermediates. Arch Biochem Biophys319:355–364
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26591-0
Loading

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error