1887

Abstract

The ability to utilize dinitrogen as a nitrogen source is an important phenotypic trait in most currently known methanotrophic bacteria (MB). This trait is especially important for acidophilic MB, which inhabit acidic oligotrophic environments, highly depleted in available nitrogen compounds. Phylogenetically, acidophilic MB are most closely related to heterotrophic dinitrogen-fixing bacteria of the genus . To further explore the phylogenetic linkage between these metabolically different organisms, the sequences of and gene fragments from acidophilic MB of the genera and , and from representatives of , were determined. For reference, and sequences were also obtained from some type II MB of the alphaproteobacterial / group and from gammaproteobacterial type I MB. The trees constructed for the inferred amino acid sequences of and were highly congruent. The phylogenetic relationships among MB in the NifH and NifD trees also agreed well with the corresponding 16S rRNA-based phylogeny, except for two distinctive features. First, different methods used for phylogenetic analysis grouped the NifH and NifD sequences of strains of the gammaproteobacterial MB within a clade mainly characterized by , including acidophilic MB and type II MB of the / group. From this and other genomic data from Bath, it is proposed that an ancient event of lateral gene transfer was responsible for this aberrant branching. Second, the identity values of NifH and NifD sequences between B2 and representatives of were clearly higher (98·5 and 96·6 %, respectively) than would be expected from their 16S rRNA-based relationships. Possibly, these two bacteria originated from a common acidophilic dinitrogen-fixing ancestor, and were subject to similar evolutionary pressure with regard to nitrogen acquisition. This interpretation is corroborated by the observation that, in contrast to most other diazotrophs, B2 and spp. are capable of active growth on nitrogen-free media under fully aerobic conditions.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26585-0
2004-05-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/5/mic1501301.html?itemId=/content/journal/micro/10.1099/mic.0.26585-0&mimeType=html&fmt=ahah

References

  1. Alston, R. A. ( 1936; ). Studies on Azotobacter in Malayan soils. J Agric Sci 26, 268–280.[CrossRef]
    [Google Scholar]
  2. Auman, A. J., Speake, C. C. & Lidstrom, M. E. ( 2001; ). nifH sequences and nitrogen fixation in type I and type II methanotrophs. Appl Environ Microbiol 67, 4009–4016.[CrossRef]
    [Google Scholar]
  3. Becking, J. H. ( 1999; ). The genus Beijerinckia. In The Prokaryotes, 3rd edn. Edited by M. Dworkin and others. New York: Springer. http://141.150.157.117:8080/prokPUB/index.htm.
  4. Boulygina, E. S., Kuznetsov, B. B., Marusina, A. I., Tourova, T. P., Kravchenko, I. K., Bykova, S. A., Kolganova, T. V. & Galchenko, V. F. ( 2002; ). A study of nucleotide sequences of nifH genes of some methanotrophic bacteria. Microbiology (English translation of Mikrobiologiya) 71, 500–508.
    [Google Scholar]
  5. Bürgmann, H., Widmer, F., von Sigler, W. & Zeyer, J. ( 2004; ). New molecular screening tools for the analysis of free-living diazotrophs in soil. Appl Environ Microbiol 70, 240–247.[CrossRef]
    [Google Scholar]
  6. Dean, D. R. & Jacobson, M. R. ( 1992; ). Biochemical genetics of nitrogenase. In Biological Nitrogen Fixation, pp. 763–784. Edited by G. Stacey, R. H. Burris & H. J. Evans. New York: Chapman & Hall.
  7. Dedysh, S. N., Panikov, N. S. & Tiedje, J. M. ( 1998; ). Acidophilic methanotrophic communities from Sphagnum peat bogs. Appl Environ Microbiol 64, 922–929.
    [Google Scholar]
  8. Dedysh, S. N., Liesack, W., Khmelenina, V. N., Suzina, N. E., Trotsenko, Y. A., Semrau, J. D., Bares, A. M., Panikov, N. S. & Tiedje, J. M. ( 2000; ). Methylocella palustris gen. nov., sp. nov., a new methane-oxidizing acidophilic bacterium from peat bogs, representing a novel subtype of serine-pathway methanotrophs. Int J Syst Evol Microbiol 50, 955–969.[CrossRef]
    [Google Scholar]
  9. Dedysh, S. N., Derakshani, M. & Liesack, W. ( 2001; ). Detection and enumeration of methanotrophs in acidic Sphagnum peat by 16S rRNA fluorescence in situ hybridisation, including the use of newly developed oligonucleotide probes for Methylocella palustris. Appl Environ Microbiol 67, 4850–4857.[CrossRef]
    [Google Scholar]
  10. Dedysh, S. N., Khmelenina, V. N., Suzina, N. E., Trotsenko, Y. A., Semrau, J. D., Liesack, W. & Tiedje, J. M. ( 2002; ). Methylocapsa acidiphila gen. nov., sp. nov., a novel methane-oxidizing and dinitrogen-fixing acidophilic bacterium from Sphagnum bog. Int J Syst Evol Microbiol 52, 251–261.
    [Google Scholar]
  11. Dedysh, S. N., Dunfield, P. F., Derakshani, M., Stubner, S., Heyer, J. & Liesack, W. ( 2003; ). Differential detection of type II methanotrophic bacteria in acidic peatlands using newly developed 16S rRNA-targeted fluorescent oligonucleotide probes. FEMS Microbiol Ecol 43, 299–308.[CrossRef]
    [Google Scholar]
  12. Dedysh, S. N., Berestovskaya, Y. Y., Vasylieva, L. V., Belova, S. E., Khmelenina, V. N., Suzina, N. E., Trotsenko, Y. A., Liesack, W. & Zavarzin, G. A. ( 2004; ). Methylocella tundrae sp. nov., a novel methanotrophic bacterium from acidic peatlands of tundra. Int J Syst Evol Microbiol 54, 151–156.[CrossRef]
    [Google Scholar]
  13. Dunfield, P. F., Khmelenina, V. N., Suzina, N. E., Trotsenko, Y. A. & Dedysh, S. N. ( 2003; ). Methylocella silvestris sp. nov., a novel methanotroph isolated from an acidic forest cambisol. Int J Syst Evol Microbiol 53, 1231–1239.[CrossRef]
    [Google Scholar]
  14. Fani, R., Gallo, R. & Lio, P. ( 2000; ). Molecular evolution of nitrogen fixation: the evolutionary history of the nifD, nifK, nifE, and nifN genes. J Mol Evol 51, 1–11.
    [Google Scholar]
  15. Felsenstein, J. ( 1989; ). PHYLIP – phylogeny inference package (version 3.2). Cladistics 5, 164–166.
    [Google Scholar]
  16. Hennecke, H., Kaluza, K., Thöny, B., Fuhrmann, M., Ludwig, W. & Stackebrandt, E. ( 1985; ). Concurrent evolution of nitrogenase genes and 16S rRNA in Rhizobium species and other nitrogen fixing bacteria. Arch Microbiol 142, 342–348.[CrossRef]
    [Google Scholar]
  17. Heyer, J., Galchenko, V. F. & Dunfield, P. F. ( 2002; ). Molecular phylogeny of type II methane-oxidizing bacteria isolated from various environments. Microbiology 148, 2831–2846.
    [Google Scholar]
  18. Krumholz, L. R., Hollenback, J. L., Roskes, S. J. & Ringelberg, D. B. ( 1995; ). Methanogenesis and methanotrophy within a Sphagnum peatland. FEMS Microbiol Ecol 18, 215–224.[CrossRef]
    [Google Scholar]
  19. Lovell, C. R., Friez, M. J., Longshore, J. W. & Bagwell, C. E. ( 2001; ). Recovery and phylogenetic analysis of nifH sequences from diazotrophic bacteria associated with dead aboveground biomass of Spartina alterniflora. Appl Environ Microbiol 67, 5308–5314.[CrossRef]
    [Google Scholar]
  20. Machado, I. M., Yates, M. G., Machado, H. B., Souza, E. M. & Pedrosa, F. O. ( 1996; ). Cloning and sequencing of the nitrogenase structural genes nifHDK of Herbaspirillum seropedicae. Braz J Med Biol Res 29, 1599–1602.
    [Google Scholar]
  21. Martinez-Romero, E. ( 2000; ). The dinitrogen-fixing bacteria. In The Prokaryotes, 3rd edn. Edited by M. Dworkin and others. New York: Springer. http://141.150.157.117:8080/prokPUB/index.htm.
  22. Minerdi, D., Fani, R., Gallo, R., Boarino, A. & Bonfante, P. ( 2001; ). Nitrogen fixation genes in an endosymbiotic Burkholderia strain. Appl Environ Microbiol 67, 725–732.[CrossRef]
    [Google Scholar]
  23. Mitsch, W. J. & Gosselink, J. G. ( 1986; ). Wetlands. New York: van Nostrand Reinhold.
  24. Murrell, J. C. & Dalton, H. ( 1983; ). Nitrogen fixation in obligate methanotrophs. J Gen Microbiol 129, 3481–3486.
    [Google Scholar]
  25. Nakamura, Y., Gojobori, T. & Ikemura, T. ( 2000; ). Codon usage tabulated from the international DNA sequence databases: status for the year 2000. Nucleic Acids Res 28, 292.[CrossRef]
    [Google Scholar]
  26. Parker, M. A., Lafay, B., Burdon, J. & van Berkum, P. ( 2002; ). Conflicting phylogeographic patterns in rRNA and nifD indicate regionally restricted gene transfer in Bradyrhizobium. Microbiology 148, 2557–2565.
    [Google Scholar]
  27. Postgate, J. ( 1987; ). Fundamentals of nitrogen fixation (New Studies in Biology), 2nd edn. London: Edward Arnold.
  28. Richardson, C. J., Tilton, D. L., Kadlec, J. A., Chamie, J. P. M. & Wentz, W. A. ( 1978; ). Nutrient dynamics of northern wetland ecosystems. In Freshwater Wetlands – Ecological Processes and Management Potential, pp. 217–241. Edited by R. E. Good, D. F. Whigham & R. L. Simpson, New York: Academic Press.
  29. Rösch, C., Mergel, A. & Bothe, H. ( 2002; ). Biodiversity of denitrifying and dinitrogen-fixing bacteria in an acid forest soil. Appl Environ Microbiol 68, 3818–3829.[CrossRef]
    [Google Scholar]
  30. Rudd, J. W. M., Furutani, A., Flett, R. J. & Hamilton, R. D. ( 1976; ). Factors controlling methane oxidation in shield lakes: the role of nitrogen fixation and oxygen concentration. Limnol Oceanogr 21, 357–364.[CrossRef]
    [Google Scholar]
  31. Sabra, W., Zeng, A. P., Lunsdorf, H. & Deckwer, W. D. ( 2000; ). Effect of oxygen on formation and structure of Azotobacter vinelandii alginate and its role in protecting nitrogenase. Appl Environ Microbiol 66, 4037–4044.[CrossRef]
    [Google Scholar]
  32. Snyder, L. & Champness, W. ( 2003; ). Molecular Genetics of Bacteria, 2nd edn. Washington, DC: American Society for Microbiology.
  33. Starkey, R. L. & De, P. K. ( 1939; ). A new species of Azotobacter. Soil Sci 47, 329–343.
    [Google Scholar]
  34. Strimmer, K. & von Haeseler, A. ( 1996; ). Quartet puzzling: a quartet maximum-likelihood method for reconstructing tree topologies. Mol Biol Evol 13, 964–969.[CrossRef]
    [Google Scholar]
  35. Sundh, I., Nilsson, M., Granberg, G. & Svensson, B. H. ( 1994; ). Depth distribution of microbial production and oxidation of methane in northern boreal peatlands. Microb Ecol 27, 253–265.
    [Google Scholar]
  36. Ueda, T., Suga, Y., Yahiro, N. & Matsuguchi, T. ( 1995a; ). Remarkable N2-fixing bacterial diversity detected in rice roots by molecular evolutionary analysis of nifH gene sequences. J Bacteriol 177, 1414–1417.
    [Google Scholar]
  37. Ueda, T., Suga, Y., Yahiro, N. & Matsuguchi, T. ( 1995b; ). Genetic diversity of N2 fixing bacteria associated with rice roots by molecular evolutionary analysis of a nifD library. Can J Microbiol 41, 235–240.[CrossRef]
    [Google Scholar]
  38. Whittenbury, R., Phillips, K. C. & Wilkinson, T. F. ( 1970; ). Enrichment, isolation and some properties of methane-utilizing bacteria. J Gen Microbiol 61, 205–218.[CrossRef]
    [Google Scholar]
  39. Whittenbury, R. ( 1981; ). The interrelationship of autotrophy and methylotrophy as seen in Methylococcus capsulatus (Bath). In Microbial growth on C1 compounds, pp. 181–190. Edited by H. Dalton. London: Heyden.
  40. Whittenbury, R. & Dalton, H. ( 1981; ). The methylotrophic bacteria. In The Prokaryotes, pp. 894–902. Edited by M. P. Starr and others. Heidelberg: Springer.
  41. Widmer, F., Shaffer, B. T., Porteous, L. A. & Seidler, R. J. ( 1999; ). Analysis of nifH gene pool complexity in soil and litter at a Douglas fir forest site in the Oregon Cascade Mountain range. Appl Environ Microbiol 65, 374–380.
    [Google Scholar]
  42. Woese, C. R., Stackebrandt, E., Weisburg, W. G. & 8 other authors ( 1984; ). The phylogeny of purple bacteria: the alpha subdivision. Syst Appl Microbiol 5, 315–326.[CrossRef]
    [Google Scholar]
  43. Young, J. P. W. ( 1992; ). Phylogenetic classification of nitrogen-fixing organisms. In Biological Nitrogen Fixation, pp. 43–86. Edited by G. Stacey, R. H. Burris & H. J. Evans. New York: Chapman & Hall.
  44. Yun, A. C. & Szalay, A. A. ( 1984; ). Structural genes of dinitrogenase and dinitrogenase reductase are transcribed from two separate promoters in the broad host range cowpea Rhizobium strain Irc78. Proc Natl Acad Sci U S A 81, 7358–7362.[CrossRef]
    [Google Scholar]
  45. Zani, S., Mellon, M. T., Collier, J. L. & Zehr, J. P. ( 2000; ). Expression of nifH genes in natural microbial assemblages in Lake George, New York, detected by reverse transcriptase PCR. Appl Environ Microbiol 66, 3119–3124.[CrossRef]
    [Google Scholar]
  46. Zehr, J. P. & McReynolds, L. A. ( 1989; ). Use of degenerate oligonucleotides for amplification of nifH gene from the marine cyanobacterium Trichodesmium thiebautii. Appl Environ Microbiol 55, 2522–2526.
    [Google Scholar]
  47. Zehr, J. P., Jenkins, B. D., Short, S. M. & Steward, G. F. ( 2003; ). Nitrogenase gene diversity and microbial community structure: a cross-system comparison. Environ Microbiol 5, 539–554.[CrossRef]
    [Google Scholar]
  48. Zehr, J. P., Mellon, M., Braun, S., Litaker, W., Steppe, T. & Paerl, H. W. ( 1995; ). Diversity of heterotrophic nitrogen fixation genes in a marine cyanobacterial mat. Appl Environ Microbiol 61, 2527–2532.
    [Google Scholar]
  49. Zehr, J. P., Mellon, M. T. & Zani, S. ( 1998; ). New nitrogen-fixing microorganisms detected in oligotrophic oceans by amplification of nitrogenase (nifH) genes. Appl Environ Microbiol 64, 3444–3450.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26585-0
Loading
/content/journal/micro/10.1099/mic.0.26585-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error