The 64 508 bp IncP-1 antibiotic multiresistance plasmid pB10 isolated from a waste-water treatment plant provides evidence for recombination between members of different branches of the IncP-1 group Free

Abstract

The complete 64 508 bp nucleotide sequence of the IncP-1 antibiotic-resistance plasmid pB10, which was isolated from a waste-water treatment plant in Germany and mediates resistance against the antimicrobial agents amoxicillin, streptomycin, sulfonamides and tetracycline and against mercury ions, was determined and analysed. A typical class 1 integron with completely conserved 5′ and 3′ segments is inserted between the and regions. The two mobile gene cassettes of this integron encode a -lactamase of the oxacillin-hydrolysing type (Oxa-2) and a gene product of unknown function (OrfE-like), respectively. The pB10-specific gene load present between the replication module () and the origin of vegetative replication () is composed of four class II (Tn family) transposable elements: (i) a Tn-like mercury-resistance () transposon downstream of the gene, (ii) a truncated derivative of the widespread streptomycin-resistance transposon Tn, (iii) the insertion sequence element IS and (iv) a Tn-like transposon that contains the tetracycline-resistance genes and . A very similar Tn-like transposon is present in the same target site of the IncP-1 degradative plasmid pJP4 and the IncP-1 resistance plasmid R906, suggesting that pB10, R906 and pJP4 are derivatives of a common ancestor. Interestingly, large parts of the predicted pB10 restriction map, except for the tetracycline-resistance determinant, are identical to that of R906. It thus appears that plasmid pB10 acquired as many as five resistance genes via three transposons and one integron, which it may rapidly spread among bacterial populations given its high promiscuity. Comparison of the pB10 backbone DNA sequences with those of other sequenced IncP-1 plasmids reveals a mosaic structure. While the conjugative transfer modules ( and regions) and the replication module are very closely related to the corresponding segments of the IncP-1 resistance plasmid R751 and even more similar to the IncP-1 degradative plasmids pTSA and pADP-1, the stable inheritance operons and are most similar to those of the IncP-1 resistance plasmid pB4, and clearly less similar to the other IncP-1 plasmids. This suggests that IncP-1 plasmids can undergo recombination in the environment, which may enhance plasmid diversity and bacterial adaptability.

Keyword(s): IR, inverted repeat
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26570-0
2003-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/11/mic1493139.html?itemId=/content/journal/micro/10.1099/mic.0.26570-0&mimeType=html&fmt=ahah

References

  1. Allmeier H., Cresnar B., Greck M., Schmitt R. 1992; Complete nucleotide sequence of Tn 1721: gene organization and a novel gene product with features of a chemotaxis protein. Gene 111:11–20
    [Google Scholar]
  2. Blázques J., Navas A., Gonzalo P., Martinez J. L., Baquero F. 1996; Spread and evolution of natural plasmids harbouring transposon Tn 5. FEMS Microbiol Ecol 19:63–71
    [Google Scholar]
  3. Boon N., Goris J., de Vos P., Verstraete W., Top E. M. 2001; Genetic diversity among 3-chloroaniline- and aniline-degrading strains of the Comamonadaceae. Appl Environ Microbiol 67:1107–1115
    [Google Scholar]
  4. Boyd E. F., Hill C. W., Rich S. M., Hartl D. L. 1996; Mosaic structure of plasmids from natural populations of Escherichia coli. Genetics 143:1091–1100
    [Google Scholar]
  5. Bunny K. L., Hall R. M., Stokes H. W. 1995; New mobile gene cassettes containing an aminoglycoside resistance gene, aacA7, and a chloramphenicol resistance gene, catB3, in an integron in pBWH301. Antimicrob Agents Chemother 39:686–693
    [Google Scholar]
  6. Burlage R. S., Bemis L. A., Layton A. C., Sayler G. S., Larimer F. 1990; Comparative genetic organization of incompatibility group P degradative plasmids. J Bacteriol 172:6818–6825
    [Google Scholar]
  7. Chiou C. S., Jones A. L. 1995; Expression and identification of the strAstrB gene pair from streptomycin-resistant Erwinia amylovora. Gene 152:47–51
    [Google Scholar]
  8. Clément P., Pieper D. H., Gonzalez B. 2001; Molecular characterization of a deletion/duplication rearrangement in tfd genes from Ralstonia eutropha JMP134(pJP4) that improves growth on 3-chlorobenzoic acid but abolishes growth on 2,4-dichlorophenoxyacetic acid. Microbiology 147:2141–2148
    [Google Scholar]
  9. Davies J. 1994; Inactivation of antibiotics and the dissemination of resistance genes. Science 264:375–381
    [Google Scholar]
  10. Davison J. 1999; Genetic exchange between bacteria in the environment. Plasmid 42:73–91
    [Google Scholar]
  11. Delcher A. L., Phillippy A., Carlton J., Salzberg S. L. 2002; Fast algorithms for large-scale genome alignment and comparison. Nucleic Acids Res 30:2478–2483
    [Google Scholar]
  12. di Gioia D., Peel M., Fava F., Wyndham R. C. 1998; Structures of homologous composite transposons carrying cbaABC genes from Europe and North America. Appl Environ Microbiol 64:1940–1946
    [Google Scholar]
  13. Don R. H., Pemberton J. M. 1985; Genetic and physical map of the 2,4-dichlorophenoxyacetic acid-degradative plasmid pJP4. J Bacteriol 161:466–468
    [Google Scholar]
  14. Dröge M., Pühler A., Selbitschka W. 2000; Phenotypic and molecular characterization of conjugative antibiotic resistance plasmids isolated from bacterial communities of activated sludge. Mol Gen Genet 263:471–482
    [Google Scholar]
  15. Galperin M. Y., Nikolskaya A. N., Koonin E. V. 2001; Novel domains of the prokaryotic two-component signal transduction systems. FEMS Microbiol Lett 203:11–21
    [Google Scholar]
  16. Grant S. G. N., Jessee J., Bloom F. R., Hanahan D. 1990; Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. Proc Natl Acad Sci U S A 87:4645–4649
    [Google Scholar]
  17. Hedges R. W., Jacob A. E., Smith J. 1974; Properties of an R factor from Bordetella bronchiseptica. J Gen Microbiol 84:199–204
    [Google Scholar]
  18. Heuer H., Krögerrecklenfort E., Wellington E. M. H. 8 other authors 2002; Gentamicin resistance genes in environmental bacteria: prevalence and transfer. FEMS Microbiol Ecol 42:289–302
    [Google Scholar]
  19. Kurtz S., Choudhuri J. V., Ohlebusch E., Schleiermacher C., Stoye J., Giegerich R. 2001; reputer: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res 29:4633–4642
    [Google Scholar]
  20. L'Abée-Lund T. M., Sorum H. 2000; Functional Tn 5393-like transposon in the R plasmid pRAS2 from the fish pathogen Aeromonas salmonicida subspecies salmonicida isolated in Norway. Appl Environ Microbiol 66:5533–5535
    [Google Scholar]
  21. Lessl M., Krishnapillai V., Schilf W. 1991; Identification and characterization of two entry exclusion genes of the promiscuous IncP plasmid-R18. Mol Gen Genet 227:120–126
    [Google Scholar]
  22. Martinez B., Tomkins J., Wackett L. P., Wing R., Sadowsky M. J. 2001; Complete nucleotide sequence and organization of the atrazine catabolic plasmid pADP-1 from Pseudomonas sp. strain ADP. J Bacteriol 183:5684–5697
    [Google Scholar]
  23. Mazel D., Davies J. 1999; Antibiotic resistance in microbes. Cell Mol Life Sci 56:742–754
    [Google Scholar]
  24. Meyer F., Goesmann A., McHardy A. C. 8 other authors 2003; gendb – an open source genome annotation system for prokaryote genomes. Nucleic Acids Res 31:2187–2195
    [Google Scholar]
  25. Mindlin S., Kholodii G., Gorlenko Z. 7 other authors 2001; Mercury resistance transposons of Gram-negative environmental bacteria and their classification. Res Microbiol 152:811–822
    [Google Scholar]
  26. Nakatsu C., Ng J., Singh R., Straus N., Wyndham C. 1991; Chlorobenzoate catabolic transposon Tn 5271 is a composite class I element with flanking class II insertion sequences. Proc Natl Acad Sci U S A 88:8312–8316
    [Google Scholar]
  27. Nücken E. J., Henschke R. B., Schmidt F. R. 1989; Nucleotide sequence of an OXA-2 β-lactamase gene from the R-plasmid R1767 derived plasmid pBP11 and comparison to closely related resistance determinants found in R46 and Tn 2603. J Gen Microbiol 135:761–765
    [Google Scholar]
  28. Pansegrau W., Lanka E., Barth P. T. 7 other authors 1994; Complete nucleotide-sequence of Birmingham IncP- α plasmids – compilation and comparative analysis. J Mol Biol 239:623–663
    [Google Scholar]
  29. Radström P., Skold O., Swedberg G., Flensburg J., Roy P. H., Sundstrom L. 1994; Transposon Tn 5090 of plasmid R751, which carries an integron, is related to Tn 7, Mu, and the retroelements. J Bacteriol 176:3257–3268
    [Google Scholar]
  30. Reverchon S., Nasser W., Robertbaudouy J. 1994; pecS: a locus controlling pectinase, cellulase and blue pigment production in Erwinia chrysanthemi. Mol Microbiol 11:1127–1139
    [Google Scholar]
  31. Rousseaux S., Soulas G., Hartmann A. 2002; Plasmid localisation of atrazine-degrading genes in newly described Chelatobacter and Arthrobacter strains. FEMS Microbiol Ecol 41:69–75
    [Google Scholar]
  32. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  33. Smalla K., Sobecky P. A. 2002; The prevalence and diversity of mobile elements in bacterial communities of different environmental habitats: insights gained from different methodological approaches. FEMS Microbiol Ecol 42:165–175
    [Google Scholar]
  34. Smith C. A., Thomas C. M. 1987; Comparison of the organisation of the genomes of phenotypically diverse plasmids of incompatibility group P: members of the IncP beta sub-group are closely related. Mol Gen Genet 206:419–427
    [Google Scholar]
  35. Smith C. A., Pinkney M., Guiney D. G., Thomas C. M. 1993; The ancestral IncP replication system consisted of contiguous oriV and trfA segments as deduced from a comparison of the nucleotide sequences of diverse IncP plasmids. J Gen Microbiol 139:1761–1766
    [Google Scholar]
  36. Staden R. 1996; The staden sequence analysis package. Mol Biotechnol 5:233–241
    [Google Scholar]
  37. Stokes H. W., Hall R. M. 1989; A novel family of potentially mobile DNA elements encoding site-specific gene integration functions: integrons. Mol Microbiol 3:1669–1683
    [Google Scholar]
  38. Stokes H. W., Hall R. M. 1992; The integron In1 in plasmid R46 includes two copies of the oxa2 gene cassette. Plasmid 28:225–234
    [Google Scholar]
  39. Tauch A., Krieft S., Kalinowski J., Pühler A. 2000; The 51,409-bp R-plasmid pTP10 from the multiresistant clinical isolate Corynebacterium striatum M82B is composed of DNA segments initially identified in soil bacteria and in plant, animal, and human pathogens. Mol Gen Genet 263:1–11
    [Google Scholar]
  40. Tauch A., Schlüter A., Bischoff N., Goesmann A., Meyer F., Pühler A. 2003; The 79,370-bp conjugative plasmid pB4 consists of an IncP-1 β backbone loaded with a chromate resistance transposon, the strAstrB streptomycin resistance gene pair, the oxacillinase gene blaNPS-1, and a tripartite antibiotic efflux system of the resistance-nodulation-division family. Mol Genet Genomics 268:570–584
    [Google Scholar]
  41. Thomas C. M., Smith C. A. 1987; Incompatibility group P plasmids: genetics, evolution, and use in genetic manipulation. Annu Rev Microbiol 41:77–101
    [Google Scholar]
  42. Thorsted P. A., Macartney D. P., Akhtar P. 9 other authors 1998; Complete sequence of the IncP beta plasmid R751: implications for evolution and organisation of the IncP backbone. J Mol Biol 282:969–990
    [Google Scholar]
  43. Top E., De Smet I., Verstraete W., Dijkmans R., Mergeay M. 1994; Exogenous isolation of mobilizing plasmids from polluted soils and sludges. Appl Environ Microbiol 60:831–839
    [Google Scholar]
  44. Top E. M., Springael D., Boon N. 2002; Catabolic mobile genetic elements and their potential use in bioaugmentation of polluted soils and waters. FEMS Microbiol Ecol 42:199–208
    [Google Scholar]
  45. Tralau T., Cook A. M., Ruff J. 2001; Map of the IncP1 beta plasmid pTSA encoding the widespread genes ( tsa) for p-toluenesulfonate degradation in Comamonas testosteroni T-2. Appl Environ Microbiol 67:1508–1516
    [Google Scholar]
  46. Turner S. L., Lilley A. K., Bailey M. J. 2002; Two dnaB genes are associated with the origin of replication of pQBR55, an exogenously isolated plasmid from the rhizosphere of sugar beet. FEMS Microbiol Ecol 42:209–215
    [Google Scholar]
  47. van Overbeek L. S., Wellington E. M. H., Egan S. 7 other authors 2002; Prevalence of streptomycin-resistance genes in bacterial populations in European habitats. FEMS Microbiol Ecol 42:277–288
    [Google Scholar]
  48. Venkatesan M. M., Goldberg M. B., Rose D. J., Grotbeck E. J., Burland V., Blattner F. R. 2001; Complete DNA sequence and analysis of the large virulence plasmid of Shigella flexneri. Infect Immun 69:3271–3285
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26570-0
Loading
/content/journal/micro/10.1099/mic.0.26570-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed