1887

Abstract

The cytoplasmic membrane protein CcmC is, together with other Ccm proteins, a component for the maturation of -type cytochromes in Gram-negative bacteria. A ATCC 17400 mutant is cytochrome -deficient and shows considerably reduced production of the two siderophores pyoverdine and quinolobactin, paralleled by a general inability to utilize various iron sources, with the exception of haem. The mutant accumulates in a 5-aminolevulinic acid-dependent synthesis a reddish, fluorescent pigment identified as protoporphyrin IX. As a consequence a phenotype similar to that of a ferrochelatase-deficient mutant characterized by drastically reduced growth upon light exposure was observed for the mutant. The defect of iron–protoporphyrin formation was further demonstrated by the failure of cell-free proteinase K-treated extracts to stimulate the growth of a haem auxotrophic indicator strain, compared to similarly prepared wild-type extracts. In addition, the mutant did not sustain growth in cross-feeding experiments while the wild-type did. Significantly reduced resistance to oxidative stress mediated by haem-containing catalases was observed for the mutant. A double mutant could not be obtained in the presence of external haem without the gene , indicating that the combination of the two mutations is lethal. It was concluded that CcmC, apart from its known function in cytochrome biogenesis, plays a role in haem biosynthesis. A function in the regulatory co-ordination of iron acquisition via siderophores, iron insertion into porphyrin via ferrochelatase and iron–protoporphyrin export for cytochrome formation is predicted.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26566-0
2003-12-01
2020-07-09
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/12/mic1493543.html?itemId=/content/journal/micro/10.1099/mic.0.26566-0&mimeType=html&fmt=ahah

References

  1. Baysse C., De Vos D., Naudet Y.. 7 other authors 2000; Vanadium interferes with siderophore-mediated iron uptake in Pseudomonas aeruginosa . Microbiology146:2425–2434
    [Google Scholar]
  2. Baysse C., Matthijs S., Pattery T., Cornelis P.. 2001; Impact of mutations in hemA and hemH genes on pyoverdine production by Pseudomonas fluorescens ATCC17400. FEMS Microbiol Lett205:57–63
    [Google Scholar]
  3. Baysse C., Budzikiewicz H., Uria-Fernandez D., Cornelis P.. 2002; Impaired maturation of the siderophore pyoverdine chromophore in Pseudomonas fluorescens ATCC 17400 deficient for the cytochrome c biogenesis protein CcmC. FEBS Lett523:23–28
    [Google Scholar]
  4. Braun V., Braun M.. 2002; Iron transport and signalling in Escherichia coli . FEBS Lett529:78–85
    [Google Scholar]
  5. Braun V., Killmann H.. 1999; Bacterial solutions to the iron-supply problem. Trends Biochem Sci24:104–109
    [Google Scholar]
  6. Cook G. M., Poole R. K.. 2000; Oxidase and periplasmic cytochrome assembly in Escherichia coli K-12: CydDC and CcmAB are not required for haem-membrane association. Microbiology146:527–536
    [Google Scholar]
  7. Cornelis P., Matthijs S.. 2002; Diversity of siderophore-mediated iron uptake in fluorescent pseudomonads: not only pyoverdines. Environ Microbiol4:787–798
    [Google Scholar]
  8. Cornelis P., Anjaiah V., Koedam N., Delfosse P., Jacques P., Thonart P., Neirinckx L.. 1992; Stability, frequency and multiplicity of transposon insertions in the pyoverdine region in the chromosomes of different fluorescent pseudomonads. J Gen Microbiol138:1337–1343
    [Google Scholar]
  9. de Lorenzo V., Herrero M., Jacubzik U., Timmis K. N.. 1990; Mini-Tn 5 transposon derivatives for the insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. J Bacteriol172:6568–6572
    [Google Scholar]
  10. Dennis J. J., Zylstra G. J.. 1998; Plasposons: modular self-cloning minitransposon derivatives for rapid genetic analysis of gram-negative bacterial genomes. Appl Environ Microbiol64:2710–2715
    [Google Scholar]
  11. Doss M. O., Philipp-Dornston W. K.. 1971; Porphyrin and heme biosynthesis from endogenous and exogenous δ -aminolevulinic acid in Escherichia coli , Pseudomonas aeruginosa and Achromobacter metalcaligenes . Hoppe-Seylers Z Physiol Chem352:725–733
    [Google Scholar]
  12. Gaballa A., Koedam N., Cornelis P.. 1996; A cytochrome c biogenesis gene involved in pyoverdine production in Pseudomonas fluorescens ATCC 17400. Mol Microbiol21:777–785
    [Google Scholar]
  13. Gaballa A., Baysse C., Koedam N., Muyldermans S., Cornelis P.. 1998; Different residues in periplasmic domains of the CcmC inner membrane protein of Pseudomonas fluorescens ATCC 17400 are critical for cytochrome c biogenesis and pyoverdine-mediated iron uptake. Mol Microbiol30:547–555
    [Google Scholar]
  14. Goldman B. S., Beckman D. L., Bali A., Monika E. M., Gabbert K. K., Kranz R. G.. 1997; Molecular and immunological analysis of an ABC transporter complex required for cytochrome c biogenesis. J Mol Biol268:724–738
    [Google Scholar]
  15. Goldman B. S., Beck D. L., Monika E. M., Kranz R. G.. 1998; Transmembrane heme delivery systems. Proc Natl Acad Sci U S A95:5003–5008
    [Google Scholar]
  16. Höfte M., Buysens S., Koedam N., Cornelis P.. 1993; Zinc affects siderophore-mediated high-affinity iron uptake systems in the rhizosphere Pseudomonas aeruginosa 7NSK2. BioMetals6:85–91
    [Google Scholar]
  17. Hungerer C., Troup B., Römling U., Jahn D.. 1995; Regulation of the hemA gene during 5-aminolevulinic acid formation in Pseudomonas aeruginosa . J Bacteriol177:1435–1443
    [Google Scholar]
  18. Kovach M. E., Phillips R. W., Elzer P. H., Roop R. M., Peterson K. M.. 1994; pBBR1MCS: a broad-host-range cloning vector. Biotechniques16:800–801
    [Google Scholar]
  19. Kranz R., Lill R., Goldman B., Bonnard G., Merchant S.. 1998; Molecular mechanisms of cytochrome c biogenesis: three distinct systems. Mol Microbiol29:383–396
    [Google Scholar]
  20. Krieger R., Rompf A., Schobert M., Jahn D.. 2002; The Pseudomonas aeruginosa hemA promoter is regulated by Anr, Dnr, NarL and Integration Host Factor. Mol Genet Genomics267:409–417
    [Google Scholar]
  21. Kwon S. J., de Boer A. L., Petri R., Schmidt-Dannert C.. 2003; High-level of porphyrins in metabolically engineered Escherichia coli : systematic extension of a pathway assembled from overexpressed genes involved in heme biosynthesis. Appl Environ Microbiol69:4875–4883
    [Google Scholar]
  22. Layer G., Verfurth K., Mahlitz E., Jahn D.. 2002; Oxygen-independent coproporphyrinogen-III oxidase HemN from Escherichia coli . J Biol Chem277:34136–34142
    [Google Scholar]
  23. Lehoux D., Sanschagrin F., Levesque R.. 2000; Genomics of the 35-kb locus and analysis of novel pvdIJK genes implicated in pyoverdine biosynthesis in Pseudomonas aeruginosa . FEMS Microbiol Lett190:141–146
    [Google Scholar]
  24. Létoffé S., Omori K., Wandersman C.. 2000; Functional characterization of the HasA (Pf) hemophore and its truncated and chimeric variants: determination of a region involved in binding to the hemophore receptor. J Bacteriol182:4401–4405
    [Google Scholar]
  25. Maciver I., Hansen E. J.. 1996; Lack of expression of the global regulator OxyR in Haemophilus influenzae has a profound effect on growth phenotype. Infect Immun64:4618–4629
    [Google Scholar]
  26. Massant J., Verstreken P., Durbecq V., Kholti A., Legrain C., Beeckmans S., Cornelis P., Glansdorff N.. 2002; Metabolic channelling of carbamoyl phosphate, a thermolabile intermediate: evidence for physical interaction between carbamate kinase-like carbamoyl-phosphate synthetase and ornithine carbamoyltransferase from the hyperthermophile Pyrococcus furiosus . J Biol Chem277:18517–18522
    [Google Scholar]
  27. Merriman T. R., Merriman M. E., Lamont I. L.. 1995; Nucleotide sequence of pvdD , a pyoverdine biosynthetic gene from Pseudomonas aeruginosa : PvdD has similarity to peptide synthetases. J Bacteriol177:252–258
    [Google Scholar]
  28. Miyamoto K., Nakahigashi K., Nishimura K., Inokuchi H.. 1991; Isolation and characterisation of visible light-sensitive mutants of Escherichia coli K12. J Mol Biol219:393–398
    [Google Scholar]
  29. Miyamoto K., Nishimura K., Masuda T., Tsuji H., Inokuchi H.. 1992; Accumulation of protoporphyrin IX in light-sensitive mutants of Escherichia coli . FEBS Lett310:246–248
    [Google Scholar]
  30. Morales V. M., Backman A., Bagdasarian M.. 1991; A series of wide-host-range low-copy-number vectors that allow direct screening for recombinants. Gene97:39–47
    [Google Scholar]
  31. Moser J., Schubert W. D., Beier V., Bringemeier I., Jahn D., Heinz D. W.. 2001; V-shaped structure of glutamyl-tRNA reductase, the first enzyme of tRNA-dependent tetrapyrrole biosynthesis. EMBO J20:6583–6590
    [Google Scholar]
  32. Mossialos D., Meyer J. M., Budzikiewicz H., Wolff U., Koedam N., Baysse C., Anjaiah V., Cornelis P.. 2000; Quinolobactin, a new siderophore of Pseudomonas fluorescens ATCC 17400, the production of which is repressed by the cognate pyoverdine. Appl Environ Microbiol66:487–492
    [Google Scholar]
  33. Mossialos D., Ochsner U., Baysse C.. 8 other authors 2002; Identification of new, conserved, non-ribosomal peptide synthetases from fluorescent pseudomonads involved in the biosynthesis of the siderophore pyoverdine. Mol Microbiol45:1673–1685
    [Google Scholar]
  34. Nachin L., El Hassouni M., Loiseau L., Expert D., Barras D.. 2001; SoxR-dependent response to oxidative stress and virulence of Erwinia chrysanthemi : the key role of SufC, an orphan ABC ATPase. Mol Microbiol39:960–972
    [Google Scholar]
  35. Nachin L., Loiseau L., Expert D., Barras F.. 2003; SufC: an unorthodox cytoplasmic ABC/ATPase required for [Fe–S] biogenesis under oxidative stress. EMBO J22:427–437
    [Google Scholar]
  36. Nakayashiki T., Inokuchi H.. 1997; Effects of starvation for heme on the synthesis of porphyrins in Escherichia coli . Mol Gen Genet255:376–381
    [Google Scholar]
  37. Nakahigashi K., Nishimura K., Miyamoto K., Inokuchi H.. 1991; Photosensitivity of a protoporphyrin-accumulating, light sensitive mutant ( visA ) of Escherichia coli K12. Proc Natl Acad Sci U S A88:10520–10524
    [Google Scholar]
  38. Ochsner U. A., Johnson Z., Vasil M. L.. 2000; Genetics and regulation of two distinct haem-uptake systems, phu and has , in Pseudomonas aeruginosa . Microbiology146:185–198
    [Google Scholar]
  39. Olsson U., Billberg A., Sjovall S., Al-Karadaghi S., Hansson M.. 2002; In vivo and in vitro studies of Bacillus subtilis ferrochelatase mutants suggest substrate channeling in the heme biosynthesis pathway. J Bacteriol184:4018–4024
    [Google Scholar]
  40. Page M. D., Ferguson S. J.. 1999; Mutational analysis of the Paracoccus denitrificans c -type cytochrome biosynthetic genes ccmABCDG : disruption of ccmC has distinct effects suggesting a role for CcmC independent of CcmAB. Microbiology145:3047–3057
    [Google Scholar]
  41. Patzer S. I., Hantke K.. 1999; SufS is a NifS-like protein, and SufD is necessary for stability of the [2Fe–2S] FhuF protein in Escherichia coli . J Bacteriol181:3307–3309
    [Google Scholar]
  42. Pearce D. A., Page M. D., Norris H. A., Tomlinson E. J., Ferguson S. J.. 1998; Identification of the contiguous Paracoccus denitrificans ccmF and ccmH genes: disruption of ccmF , encoding a putative transporter, results in formation of an unstable apocytochrome c and deficiency in siderophore production. Microbiology144:467–477
    [Google Scholar]
  43. Philipp-Dornston W. K., Doss M. O.. 1973; Comparison of porphyrin and heme in various heterotrophic bacteria. Enzyme16:57–64
    [Google Scholar]
  44. Polesky A. H., Ross J. T., Falkow S., Tompkins L. S.. 2001; Identification of Legionella pneumophila mutants that are defective for iron acquisition and assimilation and intracellular infection. Infect Immun69:977–987
    [Google Scholar]
  45. Qi Z., O'Brian M. R.. 2002; Interaction between the bacterial iron response regulator and ferrochelatase mediates genetic control of heme biosynthesis. Mol Cell9:155–162
    [Google Scholar]
  46. Ravel J., Cornelis P.. 2003; Genomics of pyoverdine-mediated iron uptake in pseudomonads. Trends Microbiol11:195–200
    [Google Scholar]
  47. Rompf A., Hungerer C., Hoffmann T.. 7 other authors 1998; Regulation of Pseudomonas aeruginosa hemF and hemN by the dual action of the redox response regulators Anr and Dnr. Mol Microbiol29:985–997
    [Google Scholar]
  48. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  49. Schobert M., Jahn D.. 2002; Regulation of heme biosynthesis in non-phototrophic bacteria. J Mol Microbiol Biotechnol4:287–294
    [Google Scholar]
  50. Schulz H., Hennecke H., Thöny-Meyer L.. 1998; Prototype of a heme chaperone essential for cytochrome c maturation. Science281:1197–1200
    [Google Scholar]
  51. Schulz H., Hennecke H., Thöny-Meyer L.. 1999; Heme transfer to the heme chaperone CcmE during cytochrome c maturation requires the CcmC protein, which may function independently of the ABC transporter CcmAB. Proc Natl Acad Sci U S A96:6462–6467
    [Google Scholar]
  52. Schulz H., Pellicioli E. C., Thöny-Meyer L.. 2000; New insights into the role of CcmC, CcmD, and CcmE in the heme delivery pathway during cytochrome c maturation by a complete mutational analysis of the conserved tryptophan-rich motif of CcmC. Mol Microbiol37:1379–1388
    [Google Scholar]
  53. Schwyn B., Neilands J. B.. 1987; Universal chemical assay for the detection and determination of siderophores. Anal Biochem160:47–56
    [Google Scholar]
  54. Thöny-Meyer L.. 1997; Biogenesis of respiratory cytochromes in bacteria. Microbiol Mol Biol Rev61:337–376
    [Google Scholar]
  55. Viswanathan V. K., Kurtz S., Pedersen L. L., Abu-Kwaik Y., Krcmarik K., Mody S., Cianciotto N. P.. 2002; The cytochrome c maturation locus of Legionella pneumophila promotes iron assimilation and intracellular infection and contains a strain-specific insertion sequence element. Infect Immun70:1842–1852
    [Google Scholar]
  56. Wandersman C., Stojilkovic I.. 2000; Bacterial heme sources: the role of heme, hemoprotein receptors and hemophores. Curr Opin Microbiol3:215–220
    [Google Scholar]
  57. Yang H., Inokuchi H., Adler J.. 1995; Phototaxis away from blue light by an Escherichia coli mutant accumulating protoporphyrin IX. Proc Natl Acad Sci U S A92:7332–7336
    [Google Scholar]
  58. Yeoman K. H., Delgado M. J., Wexler M., Downie J. A., Johnston A. W.. 1997; High affinity iron acquisition in Rhizobium leguminosarum requires the cycHJKL operon and the feuPQ gene products, which belong to the family of two-component transcriptional regulators. Microbiology143:127–134
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26566-0
Loading
/content/journal/micro/10.1099/mic.0.26566-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error