1887

Abstract

The cytoplasmic membrane protein CcmC is, together with other Ccm proteins, a component for the maturation of -type cytochromes in Gram-negative bacteria. A ATCC 17400 mutant is cytochrome -deficient and shows considerably reduced production of the two siderophores pyoverdine and quinolobactin, paralleled by a general inability to utilize various iron sources, with the exception of haem. The mutant accumulates in a 5-aminolevulinic acid-dependent synthesis a reddish, fluorescent pigment identified as protoporphyrin IX. As a consequence a phenotype similar to that of a ferrochelatase-deficient mutant characterized by drastically reduced growth upon light exposure was observed for the mutant. The defect of iron–protoporphyrin formation was further demonstrated by the failure of cell-free proteinase K-treated extracts to stimulate the growth of a haem auxotrophic indicator strain, compared to similarly prepared wild-type extracts. In addition, the mutant did not sustain growth in cross-feeding experiments while the wild-type did. Significantly reduced resistance to oxidative stress mediated by haem-containing catalases was observed for the mutant. A double mutant could not be obtained in the presence of external haem without the gene , indicating that the combination of the two mutations is lethal. It was concluded that CcmC, apart from its known function in cytochrome biogenesis, plays a role in haem biosynthesis. A function in the regulatory co-ordination of iron acquisition via siderophores, iron insertion into porphyrin via ferrochelatase and iron–protoporphyrin export for cytochrome formation is predicted.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26566-0
2003-12-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/12/mic1493543.html?itemId=/content/journal/micro/10.1099/mic.0.26566-0&mimeType=html&fmt=ahah

References

  1. Baysse, C., De Vos, D., Naudet, Y. & 7 other authors ( 2000; ). Vanadium interferes with siderophore-mediated iron uptake in Pseudomonas aeruginosa. Microbiology 146, 2425–2434.
    [Google Scholar]
  2. Baysse, C., Matthijs, S., Pattery, T. & Cornelis, P. ( 2001; ). Impact of mutations in hemA and hemH genes on pyoverdine production by Pseudomonas fluorescens ATCC17400. FEMS Microbiol Lett 205, 57–63.[CrossRef]
    [Google Scholar]
  3. Baysse, C., Budzikiewicz, H., Uria-Fernandez, D. & Cornelis, P. ( 2002; ). Impaired maturation of the siderophore pyoverdine chromophore in Pseudomonas fluorescens ATCC 17400 deficient for the cytochrome c biogenesis protein CcmC. FEBS Lett 523, 23–28.[CrossRef]
    [Google Scholar]
  4. Braun, V. & Braun, M. ( 2002; ). Iron transport and signalling in Escherichia coli. FEBS Lett 529, 78–85.[CrossRef]
    [Google Scholar]
  5. Braun, V. & Killmann, H. ( 1999; ). Bacterial solutions to the iron-supply problem. Trends Biochem Sci 24, 104–109.[CrossRef]
    [Google Scholar]
  6. Cook, G. M. & Poole, R. K. ( 2000; ). Oxidase and periplasmic cytochrome assembly in Escherichia coli K-12: CydDC and CcmAB are not required for haem-membrane association. Microbiology 146, 527–536.
    [Google Scholar]
  7. Cornelis, P. & Matthijs, S. ( 2002; ). Diversity of siderophore-mediated iron uptake in fluorescent pseudomonads: not only pyoverdines. Environ Microbiol 4, 787–798.[CrossRef]
    [Google Scholar]
  8. Cornelis, P., Anjaiah, V., Koedam, N., Delfosse, P., Jacques, P., Thonart, P. & Neirinckx, L. ( 1992; ). Stability, frequency and multiplicity of transposon insertions in the pyoverdine region in the chromosomes of different fluorescent pseudomonads. J Gen Microbiol 138, 1337–1343.[CrossRef]
    [Google Scholar]
  9. de Lorenzo, V., Herrero, M., Jacubzik, U. & Timmis, K. N. ( 1990; ). Mini-Tn5 transposon derivatives for the insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. J Bacteriol 172, 6568–6572.
    [Google Scholar]
  10. Dennis, J. J. & Zylstra, G. J. ( 1998; ). Plasposons: modular self-cloning minitransposon derivatives for rapid genetic analysis of gram-negative bacterial genomes. Appl Environ Microbiol 64, 2710–2715.
    [Google Scholar]
  11. Doss, M. O. & Philipp-Dornston, W. K. ( 1971; ). Porphyrin and heme biosynthesis from endogenous and exogenous δ-aminolevulinic acid in Escherichia coli, Pseudomonas aeruginosa and Achromobacter metalcaligenes. Hoppe-Seylers Z Physiol Chem 352, 725–733.[CrossRef]
    [Google Scholar]
  12. Gaballa, A., Koedam, N. & Cornelis, P. ( 1996; ). A cytochrome c biogenesis gene involved in pyoverdine production in Pseudomonas fluorescens ATCC 17400. Mol Microbiol 21, 777–785.[CrossRef]
    [Google Scholar]
  13. Gaballa, A., Baysse, C., Koedam, N., Muyldermans, S. & Cornelis, P. ( 1998; ). Different residues in periplasmic domains of the CcmC inner membrane protein of Pseudomonas fluorescens ATCC 17400 are critical for cytochrome c biogenesis and pyoverdine-mediated iron uptake. Mol Microbiol 30, 547–555.[CrossRef]
    [Google Scholar]
  14. Goldman, B. S., Beckman, D. L., Bali, A., Monika, E. M., Gabbert, K. K. & Kranz, R. G. ( 1997; ). Molecular and immunological analysis of an ABC transporter complex required for cytochrome c biogenesis. J Mol Biol 268, 724–738.[CrossRef]
    [Google Scholar]
  15. Goldman, B. S., Beck, D. L., Monika, E. M. & Kranz, R. G. ( 1998; ). Transmembrane heme delivery systems. Proc Natl Acad Sci U S A 95, 5003–5008.[CrossRef]
    [Google Scholar]
  16. Höfte, M., Buysens, S., Koedam, N. & Cornelis, P. ( 1993; ). Zinc affects siderophore-mediated high-affinity iron uptake systems in the rhizosphere Pseudomonas aeruginosa 7NSK2. BioMetals 6, 85–91.
    [Google Scholar]
  17. Hungerer, C., Troup, B., Römling, U. & Jahn, D. ( 1995; ). Regulation of the hemA gene during 5-aminolevulinic acid formation in Pseudomonas aeruginosa. J Bacteriol 177, 1435–1443.
    [Google Scholar]
  18. Kovach, M. E., Phillips, R. W., Elzer, P. H., Roop, R. M. & Peterson, K. M. ( 1994; ). pBBR1MCS: a broad-host-range cloning vector. Biotechniques 16, 800–801.
    [Google Scholar]
  19. Kranz, R., Lill, R., Goldman, B., Bonnard, G. & Merchant, S. ( 1998; ). Molecular mechanisms of cytochrome c biogenesis: three distinct systems. Mol Microbiol 29, 383–396.[CrossRef]
    [Google Scholar]
  20. Krieger, R., Rompf, A., Schobert, M. & Jahn, D. ( 2002; ). The Pseudomonas aeruginosa hemA promoter is regulated by Anr, Dnr, NarL and Integration Host Factor. Mol Genet Genomics 267, 409–417.[CrossRef]
    [Google Scholar]
  21. Kwon, S. J., de Boer, A. L., Petri, R. & Schmidt-Dannert, C. ( 2003; ). High-level of porphyrins in metabolically engineered Escherichia coli: systematic extension of a pathway assembled from overexpressed genes involved in heme biosynthesis. Appl Environ Microbiol 69, 4875–4883.[CrossRef]
    [Google Scholar]
  22. Layer, G., Verfurth, K., Mahlitz, E. & Jahn, D. ( 2002; ). Oxygen-independent coproporphyrinogen-III oxidase HemN from Escherichia coli. J Biol Chem 277, 34136–34142.[CrossRef]
    [Google Scholar]
  23. Lehoux, D., Sanschagrin, F. & Levesque, R. ( 2000; ). Genomics of the 35-kb locus and analysis of novel pvdIJK genes implicated in pyoverdine biosynthesis in Pseudomonas aeruginosa. FEMS Microbiol Lett 190, 141–146.[CrossRef]
    [Google Scholar]
  24. Létoffé, S., Omori, K. & Wandersman, C. ( 2000; ). Functional characterization of the HasA (Pf) hemophore and its truncated and chimeric variants: determination of a region involved in binding to the hemophore receptor. J Bacteriol 182, 4401–4405.[CrossRef]
    [Google Scholar]
  25. Maciver, I. & Hansen, E. J. ( 1996; ). Lack of expression of the global regulator OxyR in Haemophilus influenzae has a profound effect on growth phenotype. Infect Immun 64, 4618–4629.
    [Google Scholar]
  26. Massant, J., Verstreken, P., Durbecq, V., Kholti, A., Legrain, C., Beeckmans, S., Cornelis, P. & Glansdorff, N. ( 2002; ). Metabolic channelling of carbamoyl phosphate, a thermolabile intermediate: evidence for physical interaction between carbamate kinase-like carbamoyl-phosphate synthetase and ornithine carbamoyltransferase from the hyperthermophile Pyrococcus furiosus. J Biol Chem 277, 18517–18522.[CrossRef]
    [Google Scholar]
  27. Merriman, T. R., Merriman, M. E. & Lamont, I. L. ( 1995; ). Nucleotide sequence of pvdD, a pyoverdine biosynthetic gene from Pseudomonas aeruginosa: PvdD has similarity to peptide synthetases. J Bacteriol 177, 252–258.
    [Google Scholar]
  28. Miyamoto, K., Nakahigashi, K., Nishimura, K. & Inokuchi, H. ( 1991; ). Isolation and characterisation of visible light-sensitive mutants of Escherichia coli K12. J Mol Biol 219, 393–398.[CrossRef]
    [Google Scholar]
  29. Miyamoto, K., Nishimura, K., Masuda, T., Tsuji, H. & Inokuchi, H. ( 1992; ). Accumulation of protoporphyrin IX in light-sensitive mutants of Escherichia coli. FEBS Lett 310, 246–248.[CrossRef]
    [Google Scholar]
  30. Morales, V. M., Backman, A. & Bagdasarian, M. ( 1991; ). A series of wide-host-range low-copy-number vectors that allow direct screening for recombinants. Gene 97, 39–47.[CrossRef]
    [Google Scholar]
  31. Moser, J., Schubert, W. D., Beier, V., Bringemeier, I., Jahn, D. & Heinz, D. W. ( 2001; ). V-shaped structure of glutamyl-tRNA reductase, the first enzyme of tRNA-dependent tetrapyrrole biosynthesis. EMBO J 20, 6583–6590.[CrossRef]
    [Google Scholar]
  32. Mossialos, D., Meyer, J. M., Budzikiewicz, H., Wolff, U., Koedam, N., Baysse, C., Anjaiah, V. & Cornelis, P. ( 2000; ). Quinolobactin, a new siderophore of Pseudomonas fluorescens ATCC 17400, the production of which is repressed by the cognate pyoverdine. Appl Environ Microbiol 66, 487–492.[CrossRef]
    [Google Scholar]
  33. Mossialos, D., Ochsner, U., Baysse, C. & 8 other authors ( 2002; ). Identification of new, conserved, non-ribosomal peptide synthetases from fluorescent pseudomonads involved in the biosynthesis of the siderophore pyoverdine. Mol Microbiol 45, 1673–1685.[CrossRef]
    [Google Scholar]
  34. Nachin, L., El Hassouni, M., Loiseau, L., Expert, D. & Barras, D. ( 2001; ). SoxR-dependent response to oxidative stress and virulence of Erwinia chrysanthemi: the key role of SufC, an orphan ABC ATPase. Mol Microbiol 39, 960–972.[CrossRef]
    [Google Scholar]
  35. Nachin, L., Loiseau, L., Expert, D. & Barras, F. ( 2003; ). SufC: an unorthodox cytoplasmic ABC/ATPase required for [Fe–S] biogenesis under oxidative stress. EMBO J 22, 427–437.[CrossRef]
    [Google Scholar]
  36. Nakayashiki, T. & Inokuchi, H. ( 1997; ). Effects of starvation for heme on the synthesis of porphyrins in Escherichia coli. Mol Gen Genet 255, 376–381.[CrossRef]
    [Google Scholar]
  37. Nakahigashi, K., Nishimura, K., Miyamoto, K. & Inokuchi, H. ( 1991; ). Photosensitivity of a protoporphyrin-accumulating, light sensitive mutant (visA) of Escherichia coli K12. Proc Natl Acad Sci U S A 88, 10520–10524.[CrossRef]
    [Google Scholar]
  38. Ochsner, U. A., Johnson, Z. & Vasil, M. L. ( 2000; ). Genetics and regulation of two distinct haem-uptake systems, phu and has, in Pseudomonas aeruginosa. Microbiology 146, 185–198.
    [Google Scholar]
  39. Olsson, U., Billberg, A., Sjovall, S., Al-Karadaghi, S. & Hansson, M. ( 2002; ). In vivo and in vitro studies of Bacillus subtilis ferrochelatase mutants suggest substrate channeling in the heme biosynthesis pathway. J Bacteriol 184, 4018–4024.[CrossRef]
    [Google Scholar]
  40. Page, M. D. & Ferguson, S. J. ( 1999; ). Mutational analysis of the Paracoccus denitrificans c-type cytochrome biosynthetic genes ccmABCDG: disruption of ccmC has distinct effects suggesting a role for CcmC independent of CcmAB. Microbiology 145, 3047–3057.
    [Google Scholar]
  41. Patzer, S. I. & Hantke, K. ( 1999; ). SufS is a NifS-like protein, and SufD is necessary for stability of the [2Fe–2S] FhuF protein in Escherichia coli. J Bacteriol 181, 3307–3309.
    [Google Scholar]
  42. Pearce, D. A., Page, M. D., Norris, H. A., Tomlinson, E. J. & Ferguson, S. J. ( 1998; ). Identification of the contiguous Paracoccus denitrificans ccmF and ccmH genes: disruption of ccmF, encoding a putative transporter, results in formation of an unstable apocytochrome c and deficiency in siderophore production. Microbiology 144, 467–477.[CrossRef]
    [Google Scholar]
  43. Philipp-Dornston, W. K. & Doss, M. O. ( 1973; ). Comparison of porphyrin and heme in various heterotrophic bacteria. Enzyme 16, 57–64.
    [Google Scholar]
  44. Polesky, A. H., Ross, J. T., Falkow, S. & Tompkins, L. S. ( 2001; ). Identification of Legionella pneumophila mutants that are defective for iron acquisition and assimilation and intracellular infection. Infect Immun 69, 977–987.[CrossRef]
    [Google Scholar]
  45. Qi, Z. & O'Brian, M. R. ( 2002; ). Interaction between the bacterial iron response regulator and ferrochelatase mediates genetic control of heme biosynthesis. Mol Cell 9, 155–162.[CrossRef]
    [Google Scholar]
  46. Ravel, J. & Cornelis, P. ( 2003; ). Genomics of pyoverdine-mediated iron uptake in pseudomonads. Trends Microbiol 11, 195–200.[CrossRef]
    [Google Scholar]
  47. Rompf, A., Hungerer, C., Hoffmann, T. & 7 other authors ( 1998; ). Regulation of Pseudomonas aeruginosa hemF and hemN by the dual action of the redox response regulators Anr and Dnr. Mol Microbiol 29, 985–997.[CrossRef]
    [Google Scholar]
  48. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  49. Schobert, M. & Jahn, D. ( 2002; ). Regulation of heme biosynthesis in non-phototrophic bacteria. J Mol Microbiol Biotechnol 4, 287–294.
    [Google Scholar]
  50. Schulz, H., Hennecke, H. & Thöny-Meyer, L. ( 1998; ). Prototype of a heme chaperone essential for cytochrome c maturation. Science 281, 1197–1200.[CrossRef]
    [Google Scholar]
  51. Schulz, H., Hennecke, H. & Thöny-Meyer, L. ( 1999; ). Heme transfer to the heme chaperone CcmE during cytochrome c maturation requires the CcmC protein, which may function independently of the ABC transporter CcmAB. Proc Natl Acad Sci U S A 96, 6462–6467.[CrossRef]
    [Google Scholar]
  52. Schulz, H., Pellicioli, E. C. & Thöny-Meyer, L. ( 2000; ). New insights into the role of CcmC, CcmD, and CcmE in the heme delivery pathway during cytochrome c maturation by a complete mutational analysis of the conserved tryptophan-rich motif of CcmC. Mol Microbiol 37, 1379–1388.[CrossRef]
    [Google Scholar]
  53. Schwyn, B. & Neilands, J. B. ( 1987; ). Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160, 47–56.[CrossRef]
    [Google Scholar]
  54. Thöny-Meyer, L. ( 1997; ). Biogenesis of respiratory cytochromes in bacteria. Microbiol Mol Biol Rev 61, 337–376.
    [Google Scholar]
  55. Viswanathan, V. K., Kurtz, S., Pedersen, L. L., Abu-Kwaik, Y., Krcmarik, K., Mody, S. & Cianciotto, N. P. ( 2002; ). The cytochrome c maturation locus of Legionella pneumophila promotes iron assimilation and intracellular infection and contains a strain-specific insertion sequence element. Infect Immun 70, 1842–1852.[CrossRef]
    [Google Scholar]
  56. Wandersman, C. & Stojilkovic, I. ( 2000; ). Bacterial heme sources: the role of heme, hemoprotein receptors and hemophores. Curr Opin Microbiol 3, 215–220.[CrossRef]
    [Google Scholar]
  57. Yang, H., Inokuchi, H. & Adler, J. ( 1995; ). Phototaxis away from blue light by an Escherichia coli mutant accumulating protoporphyrin IX. Proc Natl Acad Sci U S A 92, 7332–7336.[CrossRef]
    [Google Scholar]
  58. Yeoman, K. H., Delgado, M. J., Wexler, M., Downie, J. A. & Johnston, A. W. ( 1997; ). High affinity iron acquisition in Rhizobium leguminosarum requires the cycHJKL operon and the feuPQ gene products, which belong to the family of two-component transcriptional regulators. Microbiology 143, 127–134.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26566-0
Loading
/content/journal/micro/10.1099/mic.0.26566-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error