1887

Abstract

is an insect-pathogenic bacterium that forms a symbiosis with specific entomopathogenic nematodes. In this bacterium, a symbiosis-‘deficient’ phenotypic variant (known as the secondary variant or form II) arises at a low frequency during prolonged incubation. A knock-out mutant was generated of the regulator of a newly identified two-component regulatory system, designated AstR–AstS. Interestingly, this mutation altered the timing of phenotypic switching. Variant cells arose in the mutant strain several days before they did in the wild-type population, suggesting that AstRS is directly or indirectly involved in the genetic mechanism underlying variant cell formation. This mutation also affected motility and antibiotic synthesis. To identify AstRS-regulated genes, a comparative analysis using two-dimensional gel electrophoresis was performed. Seventeen proteins with modified synthesis in stationary phase were identified by mass spectrometry and shown to be involved in electron-transport systems, energy metabolism, iron acquisition and stress responses. The results imply that AstRS is involved in the adaptation of cells to the stationary phase, whilst negatively affecting the competitive advantage of form I cells. The link between AstRS-dependent stationary-phase adaptation and phenotypic variation is discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26563-0
2004-04-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/4/mic1500897.html?itemId=/content/journal/micro/10.1099/mic.0.26563-0&mimeType=html&fmt=ahah

References

  1. Akerley B. J., Miller J. F. 1993; Flagellin gene transcription in Bordetella bronchiseptica is regulated by the BvgAS virulence control system. J Bacteriol 175:3468–3479
    [Google Scholar]
  2. Akhurst R. J. 1980; Morphological and functional dimorphisms in Xenorhabdus spp., bacteria symbiotically associated with the insect pathogenic nematodesNeoaplectanaand Heterorhabditis. J Gen Microbiol 121:303–309
    [Google Scholar]
  3. Altschul S. F., Lipman D. J. 1990; Protein database searches for multiple alignments. Proc Natl Acad Sci U S A 87:5509–5513 [CrossRef]
    [Google Scholar]
  4. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  5. Antoine R., Alonso S., Raze D., Coutte L., Lesjean S., Willery E., Locht C., Jacob-Dubuisson F. 2000; New virulence-activated and virulence-repressed genes identified by systematic gene inactivation and generation of transcriptional fusions in Bordetella pertussis. J Bacteriol 182:5902–5905 [CrossRef]
    [Google Scholar]
  6. Bartolomé B., Jubete Y., Martinez E., de la Cruz F. 1991; Construction and properties of a family of pACYC184-derived cloning vectors compatible with pBR322 and its derivatives. Gene 102:75–78 [CrossRef]
    [Google Scholar]
  7. Bertin P., Benhabiles N., Krin E., Laurent-Winter C., Tendeng C., Turlin E., Thomas A., Danchin A., Brasseur R. 1999; The structural and functional organization of H-NS-like proteins is evolutionarily conserved in Gram-negative bacteria. Mol Microbiol 31:319–329 [CrossRef]
    [Google Scholar]
  8. Bintrim S. B., Ensign J. C. 1998; Insertional inactivation of genes encoding the crystalline inclusion proteins of Photorhabdus luminescens results in mutants with pleiotropic phenotypes. J Bacteriol 180:1261–1269
    [Google Scholar]
  9. Bleakley B., Nealson K. H. 1988; Characterization of primary and secondary form of Xenorhabdus luminescens strain HM. FEMS Microbiol Ecol 53:241–250
    [Google Scholar]
  10. Bochkareva E. S., Girshovich A. S., Bibi E. 2002; Identification and characterization of the Escherichia coli stress protein UP12, a putative in vivo substrate of GroEL. Eur J Biochem 269:3032–3040 [CrossRef]
    [Google Scholar]
  11. Boemare N. E., Akhurst R. J. 1988; Biochemical and physiological characterization of colony form variants in Xenorhabdus spp.(Enterobacteriaceae). J Gen Microbiol 134:751–761
    [Google Scholar]
  12. Boemare N., Givaudan A., Brehelin M., Laumond C. 1997; Symbiosis and pathogenicity of nematode–bacterium complexes. Symbiosis 22:21–45
    [Google Scholar]
  13. Brillard J., Duchaud E., Boemare N., Kunst F., Givaudan A. 2002; The PhlA hemolysin from the entomopathogenic bacterium Photorhabdus luminescens belongs to the two-partner secretion family of hemolysins. J Bacteriol 184:3871–3878 [CrossRef]
    [Google Scholar]
  14. Bull C. T., Duffy B., Voisard C., Defago G., Keel C., Haas D. 2001; Characterization of spontaneous gacS and gacA regulatory mutants of Pseudomonas fluorescens biocontrol strain CHAO. Antonie Van Leeuwenhoek 79:327–336 [CrossRef]
    [Google Scholar]
  15. Ciche T. A., Bintrim S. B., Horswill A. R., Ensign J. C. 2001; A phosphopantetheinyl transferase homolog is essential for Photorhabdus luminescens to support growth and reproduction of the entomopathogenic nematodeHeterorhabditis bacteriophora. J Bacteriol 183:3117–3126 [CrossRef]
    [Google Scholar]
  16. Claros M. G., von Heijne G. 1994; TopPred II: an improved software for membrane protein structure predictions. Comput Appl Biosci 10:685–686
    [Google Scholar]
  17. Derzelle S., Duchaud E., Kunst F., Danchin A., Bertin P. 2002; Identification, characterization, and regulation of a cluster of genes involved in carbapenem biosynthesis in Photorhabdus luminescens. Appl Environ Microbiol 68:3780–3789 [CrossRef]
    [Google Scholar]
  18. Duchaud E., Rusniok C., Frangeul L.23 other authors 2003; The Photorhabdus luminescens genome reveals a biotechnological weapon to fight microbes and insect pests. Nat Biotechnol 21:1307–1313 [CrossRef]
    [Google Scholar]
  19. Ehlers R. D., Stoessel S., Whyss U. 1990; The influence of phase variants of Xenorhabdus spp. and Escherichia coli (Enterobacteriaceae) on the propagation of entomopathogenic nematodes of the genera Steinernema and Heterorhabditis. Rev Nematol 13:417–424
    [Google Scholar]
  20. ffrench-Constant R., Waterfield N., Daborn P.7 other authors 2003; Photorhabdus: towards a functional genomic analysis of a symbiont, and pathogen. FEMS Microbiol Rev 26:433–456 [CrossRef]
    [Google Scholar]
  21. Fischer-Le Saux M., Viallard V., Brunel B., Normand P., Boemare N. E. 1999; Polyphasic classification of the genus Photorhabdus and proposal of new taxa:P. luminescens subsp. luminescens subsp. nov., P. luminescens subsp. akhurstii subsp. nov., P. luminescens subsp. laumondii subsp. nov., P. temperata sp. nov., P. temperata subsp. temperata subsp. nov. and P. asymbiotica sp. nov. Int J Syst Bacteriol 49:1645–1656 [CrossRef]
    [Google Scholar]
  22. Forst S., Clarke D. 2002; Bacteria–nematode symbiosis. In Entomopathogenic Nematology pp. 57–77 Edited by Gaugler R. London: CAB International;
    [Google Scholar]
  23. Forst S., Dowds B., Boemare N., Stackebrandt E. 1997; Xenorhabdus and Photorhabdus spp. – bugs that kill bugs. Annu Rev Microbiol 51:47–72 [CrossRef]
    [Google Scholar]
  24. Giardina P. C., Foster L.-A., Musser J. M., Akerley B. J., Miller J. F., Dyer D. W. 1995; bvg repression of alcaligin synthesis in Bordetella bronchiseptica is associated with phylogenetic lineage. J Bacteriol 177:6058–6063
    [Google Scholar]
  25. Givaudan A., Lanois A. 2000; flhDC, the flagellar master operon of Xenorhabdus nematophilus: requirement for motility, lipolysis, extracellular hemolysis, and full virulence in insects. J Bacteriol 182:107–115 [CrossRef]
    [Google Scholar]
  26. Gorg A., Postel W., Weser J., Hanash S. M., Somerlot L., Günther S., Strahler J. R. 1987; Elimination of point streaking on silver-stained two-dimensional gels by addition of iodoacetamide to the equilibration buffer. Electrophoresis 8:122–124 [CrossRef]
    [Google Scholar]
  27. Gorg A., Postel W., Gunther S. 1988; The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 9:531–546 [CrossRef]
    [Google Scholar]
  28. Gothel S. F., Scholz C., Schmid F. X., Marahiel M. A. 1998; Cyclophilin and trigger factor from Bacillus subtilis catalyze in vitro protein folding and are necessary for viability under starvation conditions. Biochemistry 37:13392–13399 [CrossRef]
    [Google Scholar]
  29. Grallert H., Buchner J. 2001; Review: a structural view of the GroE chaperone cycle. J Struct Biol 135:95–103 [CrossRef]
    [Google Scholar]
  30. Gustavsson N., Diez A. A., Nyström T. 2002; The universal stress protein paralogues of Escherichia coli are co-ordinately regulated and co-operate in the defence against DNA damage. Mol Microbiol 43:107–117 [CrossRef]
    [Google Scholar]
  31. Han Y. W., Uhl M. A., Han S. J., Shi W. 1999; Expression of bvgAS of Bordetella pertussis represses flagellar biosynthesis of Escherichia coli]. Arch Microbiol 171:127–130 [CrossRef]
    [Google Scholar]
  32. Hasona A., Self W. T., Shanmugam K. T. 2001; Transcriptional regulation of the moe(molybdate metabolism) operon of Escherichia coli. Arch Microbiol 175:178–188 [CrossRef]
    [Google Scholar]
  33. Hentschel U., Steinert M., Hacker J. 2000; Common molecular mechanisms of symbiosis and pathogenesis. Trends Microbiol 8:226–231 [CrossRef]
    [Google Scholar]
  34. Humm A., Huber R., Mann K. 1994; The amino acid sequences of human and pig l-arginine : glycine amidinotransferase. FEBS Lett 339:101–107 [CrossRef]
    [Google Scholar]
  35. Hurlbert R. E. 1994; Investigations into the pathogenic mechanisms of the bacterium–nematode complex. ASM News 60:473–478
    [Google Scholar]
  36. Joyce S. A., Clarke D. J. 2003; A hexA homologue from Photorhabdus regulates pathogenicity, symbiosis and phenotypic variation. Mol Microbiol 47:1445–1457 [CrossRef]
    [Google Scholar]
  37. Kinnear S. M., Marques R. R., Carbonetti N. H. 2001; Differential regulation of Bvg-activated virulence factors plays a role in Bordetella pertussis pathogenicity. Infect Immun 69:1983–1993 [CrossRef]
    [Google Scholar]
  38. Krasomil-Osterfeld K. C. 1995; Influence of osmolarity on phase shift in Photorhabdus luminescens. Appl Environ Microbiol 61:3748–3749
    [Google Scholar]
  39. Locht C., Antoine R., Jacob-Dubuisson F. 2001; Bordetella pertussis, molecular pathogenesis under multiple aspects. Curr Opinion Microbiol 4:82–89 [CrossRef]
    [Google Scholar]
  40. Miller J. F., Johnson S. A., Black W. J., Beattie D. T., Mekalanos J. J., Falkow S. 1992; Constitutive sensory transduction mutations in the Bordetella pertussis bvgS gene. J Bacteriol 174:970–979
    [Google Scholar]
  41. Neidhardt F. C., Bloch P. L., Smith D. F. 1974; Culture medium for enterobacteria. J Bacteriol 119:736–747
    [Google Scholar]
  42. Nyström T., Neidhardt F. C. 1994; Expression and role of the universal stress protein, UspA, of Escherichia coli during growth arrest. Mol Microbiol 11:537–544 [CrossRef]
    [Google Scholar]
  43. O'Neill K. H., Roche D. M., Clarke D. J., Dowds B. C. 2002; The ner gene of Photorhabdus: effects on primary-form-specific phenotypes and outer membrane protein composition. J Bacteriol 184:3096–3105 [CrossRef]
    [Google Scholar]
  44. Owen P., Kaback H. R., Graeme-Cook K. A. 1980; Identification of antigen 19/27 as dihydrolipoyl dehydrogenase and its probable involvement in ubiquinone-mediated NADH-dependent trransport phenomena in membrane vesicles of Escherichia coli. FEMS Microbiol Lett 7:345–348 [CrossRef]
    [Google Scholar]
  45. Prüß B. M., Liu X., Hendrickson W., Matsumura P. 2001; FlhD/FlhC-regulated promoters analyzed by gene array and lacZ gene fusions. FEMS Microbiol Lett 197:91–97 [CrossRef]
    [Google Scholar]
  46. Quandt J., Hynes M. F. 1993; Versatile suicide vectors which allow direct selection for gene replacement in gram-negative bacteria. Gene 127:15–21 [CrossRef]
    [Google Scholar]
  47. Rabilloud T., Valette C., Lawrence J. J. 1994; Sample application by in-gel rehydration improves the resolution of two-dimensional electrophoresis with immobilized pH gradients in the first dimension. Electrophoresis 15:1552–1558 [CrossRef]
    [Google Scholar]
  48. Repaske R., Clayton M. A. 1978; Control of Escherichia coli growth by CO2. J Bacteriol 117:652–659
    [Google Scholar]
  49. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  50. Sanchez-Contreras M., Martin M., Villacieros M., O'Gara F., Bonilla I., Rivilla R. 2002; Phenotypic selection and phase variation occur during alfalfa root colonization by Pseudomonas fluorescens F113. J Bacteriol 184:1587–1596 [CrossRef]
    [Google Scholar]
  51. Schwinde J. W., Hertz P. F., Sahm H., Eikmanns B. J., Guyonvarch A. 2001; Lipoamide dehydrogenase from Corynebacterium glutamicum: molecular and physiological analysis of the lpd gene and characterization of the enzyme. Microbiology 147:2223–2231
    [Google Scholar]
  52. Shevchenko A., Wilm M., Vorm O., Mann M. 1996; Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal Chem 68:850–858 [CrossRef]
    [Google Scholar]
  53. Simon R. 1984; High frequency mobilization of gram-negative bacterial replicons by the in vitro constructed Tn5-Mob transposon. Mol Gen Genet 196:413–420 [CrossRef]
    [Google Scholar]
  54. Smigielski A., Auhkurst R. J., Boemare N. E. 1994; Phase variation in Xenorhabdus nematophilus and Photorhabdus luminescens: differences in respiratory activity and membrane energization. Appl Environ Microbiol 60:120–125
    [Google Scholar]
  55. Smith K. S., Ferry J. G. 2000; Prokaryotic carbonic anhydrases. FEMS Microbiol Rev 24:335–366 [CrossRef]
    [Google Scholar]
  56. Smith M. W., Neidhardt F. C. 1983; 2-Oxoacid dehydrogenase complexes of Escherichia coli: cellular amounts and patterns of synthesis. J Bacteriol 156:81–88
    [Google Scholar]
  57. Stock A. M., Robinson V. L., Goudreau P. N. 2000; Two-component signal transduction. Annu Rev Biochem 69:183–215 [CrossRef]
    [Google Scholar]
  58. Thorn J. M., Barton J. D., Dixon N. E., Ollis D. L., Edwards K. J. 1995; Crystal structure of Escherichia coli QOR quinone oxidoreductase complexed with NADPH. J Mol Biol 249:785–799 [CrossRef]
    [Google Scholar]
  59. Uhl A. M., Miller J. F. 1996; Integration of multiple domains in a two-component sensor protein: the Bordetella pertussis BvgAS phosphorelay. EMBO J 15:1028–1036
    [Google Scholar]
  60. Walker D. J., Burkhart W., Fioravanti C. F. 1997; Hymenolepis diminuta: mitochondrial NADH/NAD transhydrogenation and the lipoamide dehydrogenase system. Exp Parasitol 85:158–167 [CrossRef]
    [Google Scholar]
  61. Wootton J. C., Nicolson R. E., Cock J. M., Walters D. E., Burke J. F., Doyle W. A., Bray R. C. 1991; Enzymes depending on the pterin molybdenum cofactor: sequence families, spectroscopic properties of molybdenum and possible cofactor-binding domains. Biochim Biophys Acta 1057:157–185 [CrossRef]
    [Google Scholar]
  62. Youn H., Kang S. O. 2000; Enhanced sensitivity of Streptomyces seoulensis to menadione by superfluous lipoamide dehydrogenase. FEBS Lett 472:57–61 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26563-0
Loading
/content/journal/micro/10.1099/mic.0.26563-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error