1887

Abstract

The gene encoding the LlaCI methyltransferase (M.LlaCI) from subsp. W15 was overexpressed in . The enzyme was purified to apparent homogeneity using three consecutive steps of chromatography on phosphocellulose, blue-agarose and Superose 12HR, yielding a protein of 31 300±1000 under denaturing conditions. The exact position of the start codon AUG was determined by protein microsequencing. This enzyme recognizes the specific palindromic sequence 5′-AAGCTT-3′. Purified M.LlaCI was characterized. Unlike many other methyltransferases, M.LlaCI exists in solution predominantly as a dimer. It modifies the first adenine residue at the 5′ end of the specific sequence to -methyladenine and thus is functionally identical to the corresponding methyltransferases of the HindIII ( Rd) and EcoVIII ( E1585-68) restriction–modification systems. This is reflected in the identity of M.LlaCI with M.HindIII and M.EcoVIII noted at the amino acid sequence level (50 % and 62 %, respectively) and in the presence of nine sequence motifs conserved among -adenine -class methyltransferases. However, polyclonal antibodies raised against M.EcoVIII cross-reacted with M.LlaCI but not with M.HindIII. Restriction endonucleases require Mg for phosphodiester bond cleavage. Mg was shown to be a strong inhibitor of the M.LlaCI enzyme and its isospecific homologues. This observation suggests that sensitivity of the M.LlaCI to Mg may strengthen the restriction activity of the cognate endonuclease in the bacterial cell. Other biological implications of this finding are also discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26562-0
2003-11-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/11/mic1493331.html?itemId=/content/journal/micro/10.1099/mic.0.26562-0&mimeType=html&fmt=ahah

References

  1. Alatossava, T., Jutte, H., Kuhn, A. & Kellenberger, E. ( 1985; ). Manipulation of intracellular magnesium content in polymyxin B nonapeptide-sensitized Escherichia coli by ionophore A23187. J Bacteriol 162, 413–419.
    [Google Scholar]
  2. Allison, G. E. & Klaenhammer, T. R. ( 1998; ). Phage resistance mechanisms in lactic acid bacteria. Int Dairy J 8, 207–226.[CrossRef]
    [Google Scholar]
  3. Aras, R. A., Small, A. J., Ando, T. & Blaser, M. J. ( 2002; ). Helicobacter pylori interstrain restriction-modification diversity prevents genome subversion by chromosomal DNA from competing strains. Nucleic Acids Res 30, 5391–5397.[CrossRef]
    [Google Scholar]
  4. Arber, W. ( 2000; ). Genetic variation: molecular mechanisms and impact on microbial evolution. FEMS Microbiol Rev 24, 1–7.[CrossRef]
    [Google Scholar]
  5. Bheemanaik, S., Chandrashekaran, S., Nagaraja, V. & Rao, D. N. ( 2003; ). Kinetic and catalytic properties of dimeric KpnI methyltransferase. J Biol Chem 278, 7863–7874.[CrossRef]
    [Google Scholar]
  6. Bolotin, A., Wincker, P., Mauger, S., Jaillon, O., Malarme, K., Weissenbach, J., Ehrlich, S. D. & Sorokin, A. ( 2001; ). The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res 11, 731–753.[CrossRef]
    [Google Scholar]
  7. Bujnicki, J. M. & Radlinska, M. ( 1999; ). Molecular evolution of DNA-(cytosine-N4) methyltransferases: evidence for their polyphyletic origin. Nucleic Acids Res 22, 4501–4509.
    [Google Scholar]
  8. Casjens, S. ( 1998; ). The diverse and dynamic structure of bacterial genomes. Annu Rev Genet 32, 339–377.[CrossRef]
    [Google Scholar]
  9. Chandrasegaran, S. & Smith, H. O. ( 1988; ). Amino acid sequence homologies among twenty-five restriction endonucleases and methylases. In Structure and Expression from Proteins to Ribosomes, vol. 1, pp. 149–156. Edited by R. H. Sarma & M. H. Sarma. New York, NY: Adenine Press.
  10. Chang, S. & Cohen, S. N. ( 1977; ). In vivo site specific genetic recombination promoted by the EcoRI restriction endonuclease. Proc Natl Acad Sci U S A 74, 4811–4815.[CrossRef]
    [Google Scholar]
  11. Coffey, A. & Ross, R. P. ( 2002; ). Bacteriophage-resistance systems in dairy starter strains: molecular analysis to application. Antonie van Leeuwenhoek 82, 303–321.[CrossRef]
    [Google Scholar]
  12. Copley, M. S., Berstan, R., Dudd, S. N., Docherty, G., Mukherjee, A. J., Straker, V., Payne, S. & Evershed, R. P. ( 2003; ). Direct chemical evidence for widespread dairying in prehistoric Britain. Proc Natl Acad Sci U S A 100, 1524–1529.[CrossRef]
    [Google Scholar]
  13. Davis, R., van der Lelie, D., Mercenier, A., Daly, C. & Fitzgerald, G. F. ( 1993; ). ScrFI restriction-modification system of Lactococcus lactis subsp. cremoris UC503: cloning and characterization of two ScrFI methylase genes. Appl Environ Microbiol 59, 777–785.
    [Google Scholar]
  14. de la Campa, A. G., Kale, P., Springhorn, S. S. & Lacks, S. A. ( 1987; ). Proteins encoded by the DpnII restriction gene cassette. Two methylases and an endonuclease. J Mol Biol 196, 457–469.[CrossRef]
    [Google Scholar]
  15. Dreiseikelmann, B., Eichenlaub, R. & Wackernagel, W. ( 1979; ). The effect of differential methylation by Escherichia coli of plasmid DNA and phage T7 and λ DNA on the cleavage by restriction endonuclease MboI from Moraxella bovis. Biochim Biophys Acta 562, 418–428.[CrossRef]
    [Google Scholar]
  16. Dubendorff, J. W. & Studier, F. W. ( 1991; ). Controlling basal expression in an inducible T7 expression system by blocking the target T7 promoter with lac repressor. J Mol Biol 219, 45–59.[CrossRef]
    [Google Scholar]
  17. Forde, A. & Fitzgerald, G. F. ( 1999; ). Bacteriophage defence systems in lactic acid bacteria. Antonie van Leeuwenhoek 76, 89–113.[CrossRef]
    [Google Scholar]
  18. Gangola, P. & Rosen, B. P. ( 1987; ). Maintenance of intracellular calcium in Escherichia coli. J Biol Chem 262, 12570–12574.
    [Google Scholar]
  19. Gelfand, M. S. & Koonin, E. V. ( 1997; ). Avoidance of palindromic words in bacterial and archaeal genomes: a close connection with restriction enzymes. Nucleic Acids Res 25, 2430–2439.[CrossRef]
    [Google Scholar]
  20. Gong, W., O'Gara, M., Blumenthal, R. M. & Cheng, X. ( 1997; ). Structure of PvuII DNA-(cytosine N4) methyltransferase, an example of domain permutation and protein fold assignment. Nucleic Acids Res 25, 2702–2715.[CrossRef]
    [Google Scholar]
  21. Gowher, H. & Jeltsch, A. ( 2000; ). Molecular enzymology of the EcoRV DNA-(adenine-N 6)-methyltransferase: kinetics of DNA binding and bending, kinetic mechanism and linear diffusion of the enzyme on DNA. J Mol Biol 303, 93–110.[CrossRef]
    [Google Scholar]
  22. Handa, N., Ichige, A., Kusano, K. & Kobayashi, I. ( 2000; ). Cellular responses to postsegregational killing by restriction-modification genes. J Bacteriol 182, 2218–2229.[CrossRef]
    [Google Scholar]
  23. Hanish, J. & McClelland, M. ( 1988; ). Activity of DNA modification and restriction enzymes in KGB, a potassium glutamate buffer. Gene Anal Tech 5, 105–107.[CrossRef]
    [Google Scholar]
  24. Harlow, E. & Lane, D. ( 1988; ). Antibodies: a Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  25. Heitman, J., Ivanenko, T. & Kiss, A. ( 1999; ). DNA nicks inflicted by restriction endonucleases are repaired by a RecA- and RecB-dependent pathway in Escherichia coli. Mol Microbiol 33, 1141–1151.
    [Google Scholar]
  26. Heukeshoven, J. & Dernick, R. ( 1985; ). Simplified method for silver staining of proteins in polyacrylamide gels and the mechanism of silver staining. Electrophoresis 6, 103–112.[CrossRef]
    [Google Scholar]
  27. Kaczorowski, T. & Szybalski, W. ( 1998; ). Genomic DNA sequencing by SPEL-6 primer walking using hexamer ligation. Gene 223, 83–91.[CrossRef]
    [Google Scholar]
  28. Kaczorowski, T., Sektas, M. & Furmanek, B. ( 1993; ). An improvement in electrophoretic transfer of DNA from a gel to DEAE-cellulose membrane. BioTechniques 14, 900.
    [Google Scholar]
  29. Kaczorowski, T., Sektas, M., Skowron, P. & Podhajska, A. J. ( 1999; ). The FokI methyltransferase from Flavobacterium okeanokoites: purification and characterization of the enzyme and its truncated derivatives. Mol Biotechnol 13, 1–15.[CrossRef]
    [Google Scholar]
  30. Karlin, S., Burge, C. & Campbell, A. M. ( 1992; ). Statistical analysis of counts and distributions of restriction sites in DNA sequences. Nucleic Acids Res 20, 1363–1370.[CrossRef]
    [Google Scholar]
  31. Kaszubska, W., Aiken, C., O'Connor, C. D. & Gumport, R. I. ( 1989; ). Purification, cloning and sequence analysis of RsrI DNA methyltransferase: lack of homology between two enzymes, RsrI and EcoRI, that methylate the same nucleotide in identical recognition sequences. Nucleic Acids Res 17, 10403–10425.[CrossRef]
    [Google Scholar]
  32. Kehres, D., Lawyer, C. H. & Maguire, M. E. ( 1998; ). The CorA magnesium transporter gene family. Microb Comp Genomics 3, 151–169.[CrossRef]
    [Google Scholar]
  33. Kobayashi, I. ( 2001; ). Behavior of restriction-modification systems as selfish mobile elements and their impact on genome evolution. Nucleic Acids Res 29, 3742–3756.[CrossRef]
    [Google Scholar]
  34. Kobayashi, I., Nobusato, A., Kobayashi-Takahashi, N. & Uchiyama, I. ( 1999; ). Shaping the genome – restriction-modification systems as mobile genetic elements. Curr Opin Genet Dev 9, 649–656.[CrossRef]
    [Google Scholar]
  35. Korona, R. & Levin, B. R. ( 1993; ). Phage-mediated selection and the evolution and maintenance of restriction-modification. Evolution 47, 556–575.[CrossRef]
    [Google Scholar]
  36. Korona, R., Korona, B. & Levin, B. R. ( 1993; ). Sensitivity of naturally occurring coliphages to type I and type II restriction and modification. J Gen Microbiol 139, 1283–1290.[CrossRef]
    [Google Scholar]
  37. Krüger, D. H. & Bickle, T. A. ( 1983; ). Bacteriophage survival: multiple mechanisms for avoiding the deoxyribonucleic acid restriction systems of their hosts. Microbiol Rev 47, 345–360.
    [Google Scholar]
  38. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.[CrossRef]
    [Google Scholar]
  39. Landry, D., Looney, M. C., Feehery, G. R., Slatko, B. E., Jack, W. E., Schildkraut, I. & Wilson, G. G. ( 1989; ). M.FokI methylates adenine in both strands of its asymmetric recognition sequence. Gene 77, 1–10.[CrossRef]
    [Google Scholar]
  40. Liberek, K., Osipiuk, J., Zylicz, M., Ang, D., Skórko, J. & Georgopoulos, C. ( 1990; ). Physical interactions between bacteriophage and Escherichia coli proteins required for initiation of lambda DNA replication. J Biol Chem 265, 3022–3029.
    [Google Scholar]
  41. Lin, L. F., Pósfai, J., Roberts, R. J. & Kong, H. ( 2001; ). Comparative genomics of the restriction-modification systems in Helicobacter pylori. Proc Natl Acad Sci U S A 98, 2740–2745.[CrossRef]
    [Google Scholar]
  42. Lusk, J. E., Williams, J. P. & Kennedy, E. P. ( 1968; ). Magnesium and the growth of Escherichia coli. J Biol Chem 243, 2618–2624.
    [Google Scholar]
  43. Madsen, A. & Josephsen, J. ( 1998; ). Characterization of LlaCI, a new restriction-modification system from Lactococcus lactis subsp. cremoris W15. Biol Chem 379, 443–449.[CrossRef]
    [Google Scholar]
  44. Malone, T., Blumenthal, R. M. & Cheng, X. ( 1995; ). Structure-guided analysis reveals nine sequence motifs conserved among DNA amino-methyltransferases, and suggests a catalytic mechanism for these enzymes. J Mol Biol 253, 618–632.[CrossRef]
    [Google Scholar]
  45. Martin, J. L. & McMillan, F. M. ( 2002; ). SAM (dependent) I AM: the S-adenosylmethionine-dependent methyltransferase fold. Curr Opin Struct Biol 12, 783–793.[CrossRef]
    [Google Scholar]
  46. McKane, M. & Milkman, R. ( 1995; ). Transduction, restriction and recombination patterns in Escherichia coli. Genetics 139, 35–43.
    [Google Scholar]
  47. Milkman, R., Raleigh, E. A., McKane, M., Cryderman, D., Bilodeau, P. & McWeeny, K. ( 1999; ). Molecular evolution of the Escherichia coli chromosome. V. Recombination patterns among strains of diverse origin. Genetics 153, 539–554.
    [Google Scholar]
  48. Moineau, S., Walker, S. A., Vedamuthu, E. R. & Vandenbergh, P. A. ( 1995; ). Cloning and sequencing of LlaII restriction/modification genes from Lactococcus lactis and relatedness of this system to the Streptococcus pneumoniae DpnII system. Appl Environ Microbiol 61, 2193–2202.
    [Google Scholar]
  49. Moncrief, M. B. C. & Maguire, M. E. ( 1999; ). Magnesium transport in prokaryotes. J Biol Inorg Chem 4, 523–527.[CrossRef]
    [Google Scholar]
  50. Mruk, I. & Kaczorowski, T. ( 2003; ). Genetic organization and molecular analysis of the EcoVIII restriction-modification system of Escherichia coli E1585–68 and its comparison with isospecific homologs. Appl Environ Microbiol 69, 2638–2650.[CrossRef]
    [Google Scholar]
  51. Mruk, I., Sektas, M. & Kaczorowski, T. ( 2001; ). Characterization of pEC156, a ColE1-type plasmid from Escherichia coli E1585-68 that carries genes of the EcoVIII restriction-modification system. Plasmid 46, 128–139.[CrossRef]
    [Google Scholar]
  52. Naito, Y., Naito, T. & Kobayashi, I. ( 1995; ). Selfish behavior of restriction-modification systems. Science 267, 897–899.[CrossRef]
    [Google Scholar]
  53. Nobusato, A., Uchiyama, I. & Kobayashi, I. ( 2000a; ). Diversity of restriction-modification gene homologs in Helicobacter pylori. Gene 259, 89–98.[CrossRef]
    [Google Scholar]
  54. Nobusato, A., Uchiyama, I. Ohashi S. & Kobayashi, I. ( 2000b; ). Insertion with long target duplication: a mechanism for gene mobility suggested from comparison of two related bacterial genomes. Gene 259, 99–108.[CrossRef]
    [Google Scholar]
  55. Nwankwo, D. O., Moran, L. S., Slatko, B. E., Waite-Rees, P. A., Dorner, L. F. Benner J. S. & Wilson, G. G. ( 1994; ). Cloning, analysis and expression of the HindIII R–M-encoding genes. Gene 150, 75–80.[CrossRef]
    [Google Scholar]
  56. Nyengaard, N., Vogensen, F. K. & Josephsen, J. ( 1995; ). Restriction-modification systems in Lactococcus lactis. Gene 157, 13–18.[CrossRef]
    [Google Scholar]
  57. Ochman, H., Lawrence, J. G. & Groisman, E. A. ( 2000; ). Lateral gene transfer and the nature of bacterial innovation. Nature 405, 299–304.[CrossRef]
    [Google Scholar]
  58. Old, R., Murray, K. & Roizes, G. ( 1975; ). Recognition sequence of restriction endonuclease III from Haemophilus influenzae. J Mol Biol 92, 331–339.[CrossRef]
    [Google Scholar]
  59. Outten, C. E. & O'Halloran, T. V. ( 2001; ). Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science 292, 2488–2492.[CrossRef]
    [Google Scholar]
  60. Pósfai, G. & Szybalski, W. ( 1988; ). A simple method for locating methylated bases in DNA, as applied to detect asymmetric methylation by M.FokI. Gene 69, 147–151.[CrossRef]
    [Google Scholar]
  61. Pósfai, J., Bhagwat, A. S., Posfai, G. & Roberts, R. J. ( 1989; ). Predictive motifs derived from cytosine methyltransferases. Nucleic Acids Res 17, 2421–2435.[CrossRef]
    [Google Scholar]
  62. Roberts, R. J., Vincze, T., Pósfai, J. & Macelis, D. ( 2003a; ). REBASE: restriction enzymes and methyltransferases. Nucleic Acids Res 31, 418–420.[CrossRef]
    [Google Scholar]
  63. Roberts, R. J., Belfort, M., Bestor, T. & 44 other authors ( 2003b; ). A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes. Nucleic Acids Res 31, 1805–1812.[CrossRef]
    [Google Scholar]
  64. Rocha, E. P. C., Danchin, A. & Viari, A. ( 2001; ). Evolutionary role of restriction/modification systems as revealed by comparative genome analysis. Genome Res 11, 946–958.[CrossRef]
    [Google Scholar]
  65. Roy, P. H. & Smith, H. O. ( 1973; ). DNA methylases of Haemophilus influenzae Rd, I. Purification and properties. J Mol Biol 81, 427–444.[CrossRef]
    [Google Scholar]
  66. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  67. Scavetta, R. D., Thomas, C. B., Walsh, M. A., Szegedi, S., Joachimiak, A., Gumport, R. I. & Churchill, M. E. A. ( 2000; ). Structure of RsrI methyltransferase, a member of the N6-adenine β class of DNA methyltransferases. Nucleic Acids Res 28, 3950–3961.[CrossRef]
    [Google Scholar]
  68. Schlossman, D. M., Schmid, S. L., Brael, W. A. & Rothman, J. E. ( 1984; ). An enzyme that removes clathrin coats: purification of an uncoating ATPase. J Cell Biol 99, 723–733.[CrossRef]
    [Google Scholar]
  69. Seegers, J. F. M. L., van Sinderen, D. & Fitzgerald, G. F. ( 2000; ). Molecular characterization of the lactococcal plasmid pCIS3: natural stacking of specificity subunits of a type I restriction/modification system in a single lactococcal strain. Microbiology 146, 435–443.
    [Google Scholar]
  70. Sektas, M., Kaczorowski, T. & Podhajska, A. J. ( 1992; ). Purification and properties of the MboII, a class-IIS restriction endonuclease. Nucleic Acids Res 20, 433–438.[CrossRef]
    [Google Scholar]
  71. Sharp, P. M. ( 1986; ). Molecular evolution of bacteriophages: evidence of selection against the recognition sites of host restriction enzymes. Mol Biol Evol 3, 75–83.
    [Google Scholar]
  72. Silberstein, Z., Shalit, M. & Cohen, A. ( 1993; ). Heteroduplex strand-specificity in restriction-stimulated recombination by the RecE pathway of Escherichia coli. Genetics 133, 439–448.
    [Google Scholar]
  73. Stahl, M. M., Kobayashi, I., Stahl, F. W. & Huntington, S. K. ( 1983; ). Activation of Chi, a recombinator, by the action of an endonuclease at a distant site. Proc Natl Acad Sci U S A 80, 2310–2313.[CrossRef]
    [Google Scholar]
  74. Studier, F. W. ( 1991; ). Use of bacteriophage T7 lysozyme to improve an inducible T7 expression system. J Mol Biol 219, 37–44.[CrossRef]
    [Google Scholar]
  75. Studier, F. W. & Moffatt, B. A. ( 1986; ). Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189, 113–130.[CrossRef]
    [Google Scholar]
  76. Surby, M. A. & Reich, N. O. ( 1996; ). Contribution of facilitated diffusion and processive catalysis to enzyme efficiency: implications for the EcoRI restriction-modification system. Biochemistry 35, 2201–2218.[CrossRef]
    [Google Scholar]
  77. Szyf, M., Avraham-Haetzni, K., Shlomai, A. R. J., Kaplan, F., Oppenheim, A. & Razin, A. ( 1984; ). DNA methylation pattern is determined by the intracellular level of the methylase. Proc Natl Acad Sci U S A 81, 3278–3282.[CrossRef]
    [Google Scholar]
  78. Tabor, S. & Richardson, C. C. ( 1985; ). A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci U S A 82, 1074–1078.[CrossRef]
    [Google Scholar]
  79. Ueno, T., Ito, H., Kimizuka, F., Kotani, H. & Nakajima, K. ( 1993; ). Gene structure and expression of the MboI restriction-modification system. Nucleic Acids Res 21, 2309–2313.[CrossRef]
    [Google Scholar]
  80. Urig, S., Gowher, H., Hermann, A., Beck, C., Fatemi, M., Humeny, A. & Jeltsch. A. ( 2002; ). The Escherichia coli Dam methyltransferase modifies DNA in a highly processive reaction. J Mol Biol 319, 1085–1096.[CrossRef]
    [Google Scholar]
  81. Vilkaitis, G., Lubys, A., Merkiene, E., Timinskas, A., Janulaitis, A. & Klimasauskas, S. ( 2002; ). Circular permutation of DNA cytosine-N4 methyltransferases: in vivo coexistence in the BcnI system and in vitro probing by hybrid formation. Nucleic Acids Res 30, 1547–1557.[CrossRef]
    [Google Scholar]
  82. Weber, K. & Osborn, M. ( 1969; ). The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem 244, 4406–4412.
    [Google Scholar]
  83. Wilkins, B. M. ( 2002; ). Plasmid promiscuity: meeting the challenge of DNA immigration control. Environ Microbiol 4, 495–500.[CrossRef]
    [Google Scholar]
  84. Wilson, G. G. ( 1992; ). Amino acid sequence arrangements of DNA methyltransferases. Methods Enzymol 216, 259–279.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26562-0
Loading
/content/journal/micro/10.1099/mic.0.26562-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error