1887

Abstract

causes severe infections in compromised patients, survives on abiotic surfaces in hospital environments and colonizes different medical devices. In this study the analysis of the processes involved in surface attachment and biofilm formation by the prototype strain 19606 was initiated. This strain attaches to and forms biofilm structures on plastic and glass surfaces, particularly at the liquid–air interface of cultures incubated stagnantly. The cell aggregates, which contain cell stacks separated by water channels, formed under different culture conditions and were significantly enhanced under iron limitation. Electron and fluorescence microscopy showed that pili and exopolysaccharides are part of the cell aggregates formed by this strain. Electron microscopy of two insertion derivatives deficient in attachment and biofilm formation revealed the disappearance of pili-like structures and DNA sequencing analysis showed that the transposon insertions interrupted genes with the highest similarity to hypothetical genes found in , and . Although the products of these genes, which have been named and , have no known functions, they are located within a polycistronic operon that includes four other genes, two of which encode proteins related to chaperones and ushers involved in pili assembly in other bacteria. Introduction of a copy of the parental gene restored the adherence phenotype and the presence of pili on the cell surface of the mutant, but not that of the derivative. These results demonstrate that the expression of a chaperone-usher secretion system, some of whose components appear to be acquired from unrelated sources, is required for pili formation and the concomitant attachment to plastic surfaces and the ensuing formation of biofilms by cells.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26541-0
2003-12-01
2019-11-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/12/mic1493473.html?itemId=/content/journal/micro/10.1099/mic.0.26541-0&mimeType=html&fmt=ahah

References

  1. Barcak, G. J., Chandler, M. S., Redfield, R. J. & Tomb, J. F. ( 1991; ). Genetic systems in Haemophilus influenzae. Methods Enzymol 204, 321–342.
    [Google Scholar]
  2. Baumann, P., Doudoroff, M. & Stanier, R. Y. ( 1968; ). A study of the Moraxella group II. Oxidase negative species (genus Acinetobacter). J Bacteriol 95, 1520–1541.
    [Google Scholar]
  3. Bergogne-Berenzin, E. & Towner, K. J. ( 1996; ). Acinetobacter spp. as nosocomial pathogens: microbiological, clinical, and epidemiological features. Clin Microbiol Rev 9, 148–165.
    [Google Scholar]
  4. Bergogne-Berenzin, E., Decre, D. & Joly-Guillou, M. L. ( 1993; ). Opportunistic nosocomial multiply resistant bacterial infections – their treatment and prevention. J Antimicrob Chemother 32, 39–47.[CrossRef]
    [Google Scholar]
  5. Bergogne-Berenzin, E., Joly-Guillou, M. L. & Towner, K. J. ( 1996; ). History and importance of Acinetobacter spp., role in infection, treatment and cost implications. In Acinetobacter: Microbiology, Epidemiology, Infections, Management, pp. 2–12. Edited by E. Bergogne-Berenzin, M. L. Joly-Guillou & K. Towner, J. Boca Raton, FL: CRC Press.
  6. Bouvet, P. J. M. & Grimont, P. A. D. ( 1986; ). Taxonomy of the genus Acinetobacter with the recognition of Acinetobacter baumannii sp. nov., Acinetobacter haemolyticus sp. nov., Acinetobacter johnsonii sp. nov., and Acinetobacter junii sp. nov. and emended descriptions of Acinetobacter calcoaceticus and Acinetobacter lwoffii. Int J Syst Bacteriol 36, 228–240.[CrossRef]
    [Google Scholar]
  7. Calderwood, S. B. & Mekalanos, J. ( 1988; ). Confirmation of the fur operator site by insertion of a synthetic oligonucleotide into an operon fusion plasmid. J Bacteriol 170, 1015–1017.
    [Google Scholar]
  8. Donlan, R. M. & Costerton, J. W. ( 2002; ). Biofilms: survival mechanisms of clinically relevant microorganisms. J Clin Microbiol Rev 15, 167–193.[CrossRef]
    [Google Scholar]
  9. Dorsey, C. W., Tomaras, A. P. & Actis, L. A. ( 2002; ). Genetic and phenotypic analysis of Acinetobacter baumannii insertion derivatives generated with a Transposome system. Appl Environ Microbiol 68, 6353–6360.[CrossRef]
    [Google Scholar]
  10. Feinberg, A. P. & Vogelstein, B. ( 1983; ). A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132, 6–13.[CrossRef]
    [Google Scholar]
  11. Gollop, R., Inouye, M. & Inouye, S. ( 1990; ). Protein U, a late-developmental spore coat protein of Myxococcus xanthus, is a secretory protein. J Bacteriol 173, 3597–3600.
    [Google Scholar]
  12. Graber, K., Smoot, L. M. & Actis, L. A. ( 1998; ). Expression of iron binding proteins and hemin binding activity in the dental pathogen Actinobacillus actinomycetemcomitans. FEMS Microbiol Lett 163, 135–142.[CrossRef]
    [Google Scholar]
  13. Hermanns, U., Sebbel, P., Eggli, V. & Glockshuber, R. ( 2000; ). Characterization of FimC, a periplasmic assembly factor for biogenesis of type 1 pili in Escherichia coli. Biochemistry 39, 1564–1570.
    [Google Scholar]
  14. Heydorn, A., Nielsen, A. T., Hentzer, M., Sternberg, C., Givskov, M., Ersboll, B. K. & Molin, S. ( 2000; ). Quantification of biofilm structures by the novel computer program comstat. Microbiology 146, 2395–2407.
    [Google Scholar]
  15. Hunger, M., Schumucker, R., Kishan, V. & Hillen, W. ( 1990; ). Analysis and nucleotide sequence of an origin of DNA replication in Acinetobacter calcoaceticus and its use for Escherichia coli shuttle plasmids. Gene 87, 45–51.[CrossRef]
    [Google Scholar]
  16. Klemm, P., Jorgensen, B. J., van Die, I., de Ree, H. & Bergmans, H. ( 1985; ). The fim genes responsible for synthesis of type 1 fimbriae in Escherichia coli, cloning and genetic organization. Mol Gen Genet 199, 410–414.[CrossRef]
    [Google Scholar]
  17. Lawrence, J. R., Kroger, D. R., Hoyle, B. D., Costerton, J. W. & Caldwell, D. E. ( 1991; ). Optical sectioning of microbial biofilms. J Bacteriol 173, 6558–6567.
    [Google Scholar]
  18. Leigh, J. A., Signer, E. R. & Walker, G. C. ( 1985; ). Exopolysaccharide-deficient mutants of Rhizobium meliloti that form ineffective nodules. Proc Natl Acad Sci U S A 82, 6231–6235.[CrossRef]
    [Google Scholar]
  19. Makino, K., Oshima, K., Kurokawa, K. & 14 other authors ( 2003; ). Genome sequence of Vibrio parahaemolyticus: a pathogenic mechanism distinct from that of V. cholerae. Lancet 361, 743–749.[CrossRef]
    [Google Scholar]
  20. Meade, H. M., Long, S. R., Ruvkum, S. E., Brown, S. E. & Ausubel, F. M. ( 1982; ). Physical and genetic characterization of symbiotic and auxotrophic mutants Rhizobium meliloti induced by transposon Tn5 mutagenesis. J Bacteriol 149, 114–122.
    [Google Scholar]
  21. Miller, J. ( 1972; ). Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  22. Neilands, J. ( 1981; ). Microbial iron compounds. Annu Rev Biochem 50, 715–731.[CrossRef]
    [Google Scholar]
  23. Nelson, K., Weinel, C., Paulsen, I. & 40 other authors ( 2002; ). Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol 4, 799–808.[CrossRef]
    [Google Scholar]
  24. Neu, T. R., Kuhlicke, U. & Lawrence, J. R. ( 2002; ). Assessment of fluorochromes for two-photon laser scanning microscopy of biofilms. Appl Environ Microbiol 68, 901–909.[CrossRef]
    [Google Scholar]
  25. O'Toole, G. A. & Kolter, R. ( 1998a; ). Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30, 295–304.[CrossRef]
    [Google Scholar]
  26. O'Toole, G. A. & Kolter, R. ( 1998b; ). Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signaling pathways: a genetic analysis. Mol Microbiol 28, 449–461.[CrossRef]
    [Google Scholar]
  27. O'Toole, G. A., Pratt, L. A., Watnick, P. I., Newman, D. K., Weaver, V. B. & Kolter, R. ( 1999; ). Genetic approaches to the study of biofilms. Methods Enzymol 310, 91–109.
    [Google Scholar]
  28. Parkhill, J., Wren, B. W., Thomson, N. R. & 32 other authors ( 2001; ). Genome sequence of Yersinia pestis, the causative agent of plague. Nature 413, 523–527.[CrossRef]
    [Google Scholar]
  29. Rashid, M. H. & Kornberg, A. ( 2000; ). Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 97, 4885–4890.[CrossRef]
    [Google Scholar]
  30. Recht, J., Martinez, A., Torello, S. & Kolter, R. ( 2000; ). Genetic analysis of sliding motility in Mycobacterium smegmatis. J Bacteriol 182, 4348–4351.[CrossRef]
    [Google Scholar]
  31. Rosenberg, M., Bayer, E. A., Delarea, J. & Rosenberg, E. ( 1982; ). Role of thin fimbriae in adherence and growth of Acinetobacter calcoaceticus RAG-1 on hexadecane. Appl Environ Microbiol 44, 929–937.
    [Google Scholar]
  32. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  33. Sauer, F. G., Barnhart, M., Choudhury, D., Knight, S. D., Waksman, G. & Hultgren, S. J. ( 2000; ). Chaperone-assisted pilus assembly and bacterial attachment. Curr Opin Struct Biol 10, 548–556.[CrossRef]
    [Google Scholar]
  34. Solano, C., Garcia, B., Valle, J., Berasain, C., Ghigo, J. M., Gamazo, C. & Lasa, I. ( 2002; ). Genetic analysis of Salmonella enteritidis biofilm formation: critical role of cellulose. Mol Microbiol 43, 793–808.[CrossRef]
    [Google Scholar]
  35. Stoodley, P., Sauer, K., Davies, D. G. & Costerton, J. W. ( 2002; ). Biofilms as complex differentiated communities. Annu Rev Microbiol 56, 187–209.[CrossRef]
    [Google Scholar]
  36. Stover, C. K., Pham, X. Q., Erwin, A. L. & 28 other authors ( 2000; ). Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature 406, 959–964.[CrossRef]
    [Google Scholar]
  37. Thanassi, D. G., Saulino, E. T., Lombardo, M. J., Roth, R., Heuser, J. & Hultgren, S. J. ( 1998; ). The PapC usher forms an oligomeric channel: implications for pilus biogenesis across the outer membrane. Proc Natl Acad Sci U S A 95, 3146–3151.[CrossRef]
    [Google Scholar]
  38. Tolker-Nielsen, T., Brinch, U. C., Ragas, P. C., Andersen, J. B., Jacobsen, C. S. & Molin, S. ( 2000; ). Development and dynamics of Pseudomonas sp. biofilms. J Bacteriol 182, 6482–6489.[CrossRef]
    [Google Scholar]
  39. Towner, K. J., Bergogne-Berenzin, E. & Fewson, C. A. ( 1991; ). Acinetobacter portrait of a genus. In The Biology of Acinetobacter, pp. 1–24. Edited by K. J. Towner, E. Bergogne-Berenzin & C. A. Fewson. New York: Plenum.
  40. Vallet, I., Olson, J. W., Lory, S., Lazdunski, A. & Filloux, A. ( 2001; ). The chaperone/usher pathways of Pseudomonas aeruginosa: identification of fimbrial gene clusters (cup) and their involvement in biofilm formation. Proc Natl Acad Sci U S A 98, 6911–6916.[CrossRef]
    [Google Scholar]
  41. Vidal, R., Dominguez, M., Urrutia, H., Bello, H., Gonzalez, G., Garcia, A. & Zemelman, R. ( 1996; ). Biofilm formation by Acinetobacter baumannii. Microbios 86, 49–58.
    [Google Scholar]
  42. Vidal, R., Dominguez, M., Urrutia, H., Bello, H., Garcia, A., Gonzalez, G. & Zemelman, R. ( 1997; ). Effect of imipenem and sulbactam on sessile cells of Acinetobacter baumannii growing in biofilm. Microbios 91, 79–87.
    [Google Scholar]
  43. Wu, C.-J. & Janssen, G. R. ( 1996; ). Translation of vph mRNA in Streptomyces lividans and Escherichia coli after removal of the 5′ untranslated leader. Mol Microbiol 22, 339–355.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26541-0
Loading
/content/journal/micro/10.1099/mic.0.26541-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error