1887

Abstract

The genes encode an -acyl homoserine lactone (AHL)-dependent quorum-sensing system consisting of an AHL synthase that directs the synthesis of -octanoyl--homoserine lactone (ohl) and -hexanoyl--homoserine lactone and a transcriptional regulator. The virulence of mutants was examined in two animal models. Rats were infected with agar beads containing K56-2, K56-I2 ( : : Tp) or K56-R2 ( : : Tn-OT182). At 10 days post-infection, the extent of lung histopathological changes was significantly lower in lungs infected with K56-I2 or K56-R2 compared to the parent strain. Intranasal infections were performed in mice and their wild-type siblings. K56-2 was more virulent in both groups of mice. K56-I2 was the least virulent strain and was not invasive in the mice. OHL was readily detected in lung homogenates from mice infected with K56-2 but was only detected at levels slightly above background in a few mice infected with K56-I2. Lung homogenates from mice infected with K56-2 had significantly higher levels of the inflammatory mediators murine macrophage inflammatory protein-2, /, interleukin-1 and interleukin-6 than those from K56-I2-infected animals. These studies indicate that a functional CepIR quorum-sensing system contributes to the severity of infections. A zinc metalloprotease gene () was shown to be regulated by CepR and may be one of the factors that accounts for the difference in virulence between the mutant and the parent strain.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26540-0
2003-12-01
2019-11-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/12/mic1493649.html?itemId=/content/journal/micro/10.1099/mic.0.26540-0&mimeType=html&fmt=ahah

References

  1. Aguilar, C., Bertani, I. & Venturi, V. ( 2003; ). Quorum-sensing system and stationary-phase sigma factor (rpoS) of the onion pathogen Burkholderia cepacia genomovar I type strain, ATCC 25416. Appl Environ Microbiol 69, 1739–1747.[CrossRef]
    [Google Scholar]
  2. Bjarnason, J., Southward, C. M. & Surette, M. G. ( 2003; ). Genomic profiling of iron-responsive genes in Salmonella enterica serovar typhimurium by high-throughput screening of a random promoter library. J Bacteriol 185, 4973–4982.[CrossRef]
    [Google Scholar]
  3. Cangelosi, G. A., Best, E. A., Martinetti, G. & Nester, E. W. ( 1991; ). Genetic analysis of Agrobacterium. Methods Enzymol 204, 384–397.
    [Google Scholar]
  4. Cash, H. A., Woods, D. E., McCullough, B., Johanson, W. G., Jr & Bass, J. A. ( 1979; ). A rat model of chronic respiratory infection with Pseudomonas aeruginosa. Am Rev Respir Dis 119, 453–459.
    [Google Scholar]
  5. Chhabra, S. R., Harty, C., Hooi, D. S., Daykin, M., Williams, P., Telford, G., Pritchard, D. I. & Bycroft, B. W. ( 2003; ). Synthetic analogues of the bacterial signal (quorum sensing) molecule N-(3-oxododecanoyl)-l-homoserine lactone as immune modulators. J Med Chem 46, 97–104.[CrossRef]
    [Google Scholar]
  6. Chilton, M. D., Currier, T. C., Farrand, S. K., Bendich, A. J., Gordon, M. P. & Nester, E. W. ( 1974; ). Agrobacterium tumefaciens DNA and PS8 bacteriophage DNA not detected in crown gall tumors. Proc Natl Acad Sci U S A 71, 3672–3676.[CrossRef]
    [Google Scholar]
  7. Cieri, M. V., Mayer-Hamblett, N., Griffith, A. & Burns, J. L. ( 2002; ). Correlation between an in vitro invasion assay and a murine model of Burkholderia cepacia lung infection. Infect Immun 70, 1081–1086.[CrossRef]
    [Google Scholar]
  8. Coenye, T., Vandamme, P., Govan, J. R. & LiPuma, J. J. ( 2001; ). Taxonomy and identification of the Burkholderia cepacia complex. J Clin Microbiol 39, 3427–3436.[CrossRef]
    [Google Scholar]
  9. Corbett, C. R., Burtnick, M. N., Kooi, C., Woods, D. E. & Sokol, P. A. ( 2003; ). An extracellular zinc metalloprotease gene of Burkholderia cepacia. Microbiology 149, 2263–2271.[CrossRef]
    [Google Scholar]
  10. Davidson, D. J., Dorin, J. R., McLachlan, G., Ranaldi, V., Lamb, D., Doherty, C., Govan, J. & Porteous, D. J. ( 1995; ). Lung disease in the cystic fibrosis mouse exposed to bacterial pathogens. Nat Genet 9, 351–357.[CrossRef]
    [Google Scholar]
  11. de Kievit, T. R. & Iglewski, B. H. ( 2000; ). Bacterial quorum sensing in pathogenic relationships. Infect Immun 68, 4839–4849.[CrossRef]
    [Google Scholar]
  12. Erickson, D. L., Endersby, R., Kirkham, A., Stuber, K., Vollman, D. D., Rabin, H. R., Mitchell, I. & Storey, D. G. ( 2002; ). Pseudomonas aeruginosa quorum-sensing systems may control virulence factor expression in the lungs of patients with cystic fibrosis. Infect Immun 70, 1783–1790.[CrossRef]
    [Google Scholar]
  13. Fuqua, C. & Winans, S. C. ( 1996; ). Conserved cis-acting promoter elements are required for density-dependent transcription of Agrobacterium tumefaciens conjugal transfer genes. J Bacteriol 178, 435–440.
    [Google Scholar]
  14. Gotschlich, A., Huber, B., Geisenberger, O. & 11 other authors ( 2001; ). Synthesis of multiple N-acylhomoserine lactones is wide-spread among the members of the Burkholderia cepacia complex. Syst Appl Microbiol 24, 1–14.[CrossRef]
    [Google Scholar]
  15. Govan, J. R. & Deretic, V. ( 1996; ). Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev 60, 539–574.
    [Google Scholar]
  16. Govan, J. R., Hughes, J. E. & Vandamme, P. ( 1996; ). Burkholderia cepacia: medical, taxonomic and ecological issues. J Med Microbiol 45, 395–407.[CrossRef]
    [Google Scholar]
  17. Huber, B., Riedel, K., Hentzer, M., Heydorn, A., Gotschlich, A., Givskov, M., Molin, S. & Eberl, L. ( 2001; ). The cep quorum-sensing system of Burkholderia cepacia H111 controls biofilm formation and swarming motility. Microbiology 147, 2517–2528.
    [Google Scholar]
  18. Kent, G., Oliver, M., Foskett, J. K. & 7 other authors ( 1996; ). Phenotypic abnormalities in long-term surviving cystic fibrosis mice. Pediatr Res 40, 233–241.[CrossRef]
    [Google Scholar]
  19. Kothe, M., Antl, M., Huber, B., Stoecker, K., Ebrecht, D., Steinmetz, I. & Eberl, L. ( 2003; ). Killing of Caenorhabditis elegans by Burkholderia cepacia is controlled by the cep quorum-sensing system. Cell Microbiol 5, 343–351.[CrossRef]
    [Google Scholar]
  20. Lewenza, S. & Sokol, P. A. ( 2001; ). Regulation of ornibactin synthesis and N-acyl-l-homoserine lactone production by CepR in Burkholderia cepacia. J Bacteriol 183, 2212–2218.[CrossRef]
    [Google Scholar]
  21. Lewenza, S., Conway, B., Greenberg, E. P. & Sokol, P. A. ( 1999; ). Quorum sensing in Burkholderia cepacia: identification of the LuxRI homologs CepRI. J Bacteriol 181, 748–756.
    [Google Scholar]
  22. Lewenza, S., Visser, M. B. & Sokol, P. A. ( 2002; ). Interspecies communication between Burkholderia cepacia and Pseudomonas aeruginosa. Can J Microbiol 48, 707–716.[CrossRef]
    [Google Scholar]
  23. LiPuma, J. J., Spilker, T., Gill, L. H., Campbell, P. W. 3rd, Liu, L. & Mahenthiralingam, E. ( 2001; ). Disproportionate distribution of Burkholderia cepacia complex species and transmissibility markers in cystic fibrosis. Am J Respir Crit Care Med 164, 92–96.[CrossRef]
    [Google Scholar]
  24. Lutter, E., Lewenza, S., Dennis, J. J., Visser, M. B. & Sokol, P. A. ( 2001; ). Distribution of quorum-sensing genes in the Burkholderia cepacia complex. Infect Immun 69, 4661–4666.[CrossRef]
    [Google Scholar]
  25. Mahenthiralingam, E., Coenye, T., Chung, J. W., Speert, D. P., Govan, J. R. W., Taylor, P. & Vandamme, P. ( 2000; ). Diagnostically and experimentally useful panel of strains from the Burkholderia cepacia complex. J Clin Microbiol 38, 910–913.
    [Google Scholar]
  26. Mahenthiralingam, E., Baldwin, A. & Vandamme, P. ( 2002; ). Burkholderia cepacia complex infection in patients with cystic fibrosis. J Med Microbiol 51, 533–538.
    [Google Scholar]
  27. McKevitt, A. I., Bajaksouzian, S., Klinger, J. D. & Woods, D. E. ( 1989; ). Purification and characterization of an extracellular protease from Pseudomonas cepacia. Infect Immun 57, 771–778.
    [Google Scholar]
  28. Mohr, C. D., Tomich, M. & Herfst, C. A. ( 2001; ). Cellular aspects of Burkholderia cepacia infection. Microbes Infect 3, 425–435.[CrossRef]
    [Google Scholar]
  29. Ohman, D. E., Sadoff, J. C. & Iglewski, B. H. ( 1980; ). Toxin A-deficient mutants of Pseudomonas aeruginosa PA103: isolation and characterization. Infect Immun 28, 899–908.
    [Google Scholar]
  30. Pearson, J. P., Feldman, M., Iglewski, B. H. & Prince, A. ( 2000; ). Pseudomonas aeruginosa cell-to-cell signaling is required for virulence in a model of acute pulmonary infection. Infect Immun 68, 4331–4334.[CrossRef]
    [Google Scholar]
  31. Platt, T., Muller-Hill, B. & Miller, J. H. ( 1972; ). Analysis of the lac operon enzymes. In Experiments in Molecular Genetics, pp. 352–355. Edited by J. H. Miller. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  32. Rajan, S. & Saiman, L. ( 2002; ). Pulmonary infections in patients with cystic fibrosis. Semin Respir Infect 17, 47–56.[CrossRef]
    [Google Scholar]
  33. Ratjen, F. & Doring, G. ( 2003; ). Cystic fibrosis. Lancet 361, 681–689.[CrossRef]
    [Google Scholar]
  34. Riedel, K., Hentzer, M., Geisenberger, O. & 7 other authors ( 2001; ). N-Acylhomoserine-lactone-mediated communication between Pseudomonas aeruginosa and Burkholderia cepacia in mixed biofilms. Microbiology 147, 3249–3262.
    [Google Scholar]
  35. Riedel, K., Arevalo-Ferro, C., Reil, G., Gorg, A., Lottspeich, F. & Eberl, L. ( 2003; ). Analysis of the quorum-sensing regulon of the opportunistic pathogen Burkholderia cepacia H111 by proteomics. Electrophoresis 24, 740–750.[CrossRef]
    [Google Scholar]
  36. Sajjan, U., Thanassoulis, G., Cherapanov, V. & 9 other authors ( 2001; ). Enhanced susceptibility to pulmonary infection with Burkholderia cepacia in Cftr (−/−) mice. Infect Immun 69, 5138–5150.[CrossRef]
    [Google Scholar]
  37. Sajjan, U., Kent, G. & Forstner, G. ( 2002; ). Early responses of CFTR (−/−) and wild type mice to B. cepacia lung infection. Pediatr Pulmonol 34S, 232, A156.
    [Google Scholar]
  38. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  39. Schweizer, H. P. ( 1993; ). Two plasmids, X1918 and Z1918, for easy recovery of the xylE and lacZ reporter genes. Gene 134, 89–91.[CrossRef]
    [Google Scholar]
  40. Schweizer, H. P., Klassen, T. & Hoang, T. ( 1996; ). Improved methods for gene analysis and expression in Pseudomonas spp. In Molecular Biology of Pseudomonads, pp. 229–237. Edited by T. Nakazawa, K. Furukawa, D. Hass & S. Silver. Washington, DC: American Society for Microbiology.
  41. Schwiebert, E. M., Benos, D. J. & Fuller, C. M. ( 1998; ). Cystic fibrosis: a multiple exocrinopathy caused by dysfunctions in a multifunctional transport protein. Am J Med 104, 576–590.[CrossRef]
    [Google Scholar]
  42. Shaw, P. D., Ping, G., Daly, S. L., Cha, C., Cronan, J. E., Jr, Rinehart, K. L. & Farrand, S. K. ( 1997; ). Detecting and characterizing N-acyl-homoserine lactone signal molecules by thin-layer chromatography. Proc Natl Acad Sci U S A 94, 6036–6041.[CrossRef]
    [Google Scholar]
  43. Smith, R. S., Fedyk, E. R., Springer, T. A., Mukaida, N., Iglewski, B. H. & Phipps, R. P. ( 2001; ). IL-8 production in human lung fibroblasts and epithelial cells activated by the Pseudomonas autoinducer N-3-oxododecanoyl homoserine lactone is transcriptionally regulated by NF-kappa B and activator protein-2. J Immunol 167, 366–374.[CrossRef]
    [Google Scholar]
  44. Smith, R. S., Harris, S. G., Phipps, R. & Iglewski, B. ( 2002; ). The Pseudomonas aeruginosa quorum-sensing molecule N-(3-oxododecanoyl)homoserine lactone contributes to virulence and induces inflammation in vivo. J Bacteriol 184, 1132–1139.[CrossRef]
    [Google Scholar]
  45. Sokol, P. A. & Woods, D. E. ( 1984; ). Relationship of iron and extracellular virulence factors to Pseudomonas aeruginosa lung infections. J Med Microbiol 18, 125–133.[CrossRef]
    [Google Scholar]
  46. Sokol, P. A., Ohman, D. E. & Iglewski, B. H. ( 1979; ). A more sensitive plate assay for detection of protease production by Pseudomonas aeruginosa. J Clin Microbiol 9, 538–540.
    [Google Scholar]
  47. Sokol, P. A., Darling, P., Woods, D. E., Mahenthiralingam, E. & Kooi, C. ( 1999; ). Role of ornibactin biosynthesis in the virulence of Burkholderia cepacia: characterization of pvdA, the gene encoding l-ornithine N(5)-oxygenase. Infect Immun 67, 4443–4455.
    [Google Scholar]
  48. Sokol, P. A., Darling, P., Lewenza, S., Corbett, C. R. & Kooi, C. D. ( 2000; ). Identification of a siderophore receptor required for ferric ornibactin uptake in Burkholderia cepacia. Infect Immun 68, 6554–6560.[CrossRef]
    [Google Scholar]
  49. Speert, D. P., Henry, D., Vandamme, P., Corey, M. & Mahenthiralingam, E. ( 2002; ). Epidemiology of Burkholderia cepacia complex in patients with cystic fibrosis, Canada. Emerg Infect Dis 8, 181–187.[CrossRef]
    [Google Scholar]
  50. Tatterson, L. E., Poschet, J. F., Firoved, A., Skidmore, J. & Deretic, V. ( 2001; ). CFTR and Pseudomonas infections in cystic fibrosis. Front Biosci 6, D890–D897.[CrossRef]
    [Google Scholar]
  51. Telford, G., Wheeler, D., Williams, P., Tomkins, P. T., Appleby, P., Sewell, H., Stewart, G. S., Bycroft, B. W. & Pritchard, D. I. ( 1998; ). The Pseudomonas aeruginosa quorum-sensing signal molecule N-(3-oxododecanoyl)-l-homoserine lactone has immunomodulatory activity. Infect Immun 66, 36–42.
    [Google Scholar]
  52. Tomich, M., Griffith, A., Herfst, C. A., Burns, J. L. & Mohr, C. D. ( 2003; ). Attenuated virulence of a Burkholderia cepacia type III secretion mutant in a murine model of infection. Infect Immun 71, 1405–1415.[CrossRef]
    [Google Scholar]
  53. van Heeckeren, A., Walenga, R., Konstan, M. W., Bonfield, T., Davis, P. B. & Ferkol, T. ( 1997; ). Excessive inflammatory response of cystic fibrosis mice to bronchopulmonary infection with Pseudomonas aeruginosa. J Clin Invest 100, 2810–2815.[CrossRef]
    [Google Scholar]
  54. Vandamme, P., Henry, D., Coenye, T., Nzula, S., Vancanneyt, M., LiPuma, J. J., Speert, D. P., Govan, J. R. & Mahenthiralingam, E. ( 2002; ). Burkholderia anthina sp. nov. and Burkholderia pyrrocinia, two additional Burkholderia cepacia complex bacteria, may confound results of new molecular diagnostic tools. FEMS Immunol Med Microbiol 33, 143–149.[CrossRef]
    [Google Scholar]
  55. Vandamme, P., Holmes, B., Coenye, T., Goris, J., Mahenthiralingam, E., LiPuma, J. J. & Govan, J. R. ( 2003; ). Burkholderia cenocepacia sp. nov. – a new twist to an old story. Res Microbiol 154, 91–96.[CrossRef]
    [Google Scholar]
  56. Watson, B., Currier, T. C., Gordon, M. P., Chilton, M. D. & Nester, E. W. ( 1975; ). Plasmid required for virulence of Agrobacterium tumefaciens. J Bacteriol 123, 255–264.
    [Google Scholar]
  57. West, S. E., Schweizer, H. P., Dall, C., Sample, A. K. & Runyen-Janecky, L. J. ( 1994; ). Construction of improved EscherichiaPseudomonas shuttle vectors derived from pUC18/19 and sequence of the region required for their replication in Pseudomonas aeruginosa. Gene 148, 81–86.[CrossRef]
    [Google Scholar]
  58. Williams, P., Camara, M., Hardman, A. & 7 other authors ( 2000; ). Quorum sensing and the population-dependent control of virulence. Philos Trans R Soc Lond B Biol Sci 355, 667–680.[CrossRef]
    [Google Scholar]
  59. Wu, H., Song, Z., Givskov, M., Doring, G., Worlitzsch, D., Mathee, K., Rygaard, J. & Hoiby, N. ( 2001; ). Pseudomonas aeruginosa mutations in lasI and rhlI quorum sensing systems result in milder chronic lung infection. Microbiology 147, 1105–1113.
    [Google Scholar]
  60. Zhu, J., Beaber, J. W., More, M. I., Fuqua, C., Eberhard, A. & Winans, S. C. ( 1998; ). Analogs of the autoinducer 3-oxooctanoyl-homoserine lactone strongly inhibit activity of the TraR protein of Agrobacterium tumefaciens. J Bacteriol 180, 5398–5405.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26540-0
Loading
/content/journal/micro/10.1099/mic.0.26540-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error