1887

Abstract

has a multigene family, , that encodes proteins with homology to KEX2-like proteases. genes cluster with genes near the telomeres and, like MSG, PRT1 proteins seem to be surface-expressed. The clustering of and genes suggested that expression of the two multigene families might be coordinated. Studying gene expression in has been hampered by the lack of a culture system, and by lack of clonality in populations in naturally infected rats, the host of this fungus. Heterogeneity can be reduced, however, by low-dose intratracheal inoculation, which can produce populations dominated by organisms derived from a single progenitor. To study PRT1 expression, nude rats were inoculated with approximately 10 each. The clonality of the populations from inoculated rats was assessed by analysis of the UCS locus, a site in the genome that is known to be very heterogeneous in naturally infected rats, but nearly homogeneous in rats infected by low-dose intratracheal inoculation. Each of the populations had the same gene at the UCS locus in at least 80 % of the organisms. To investigate gene expression, RNA was amplified using primers that amplify numerous genes. Seventy-four cloned cDNAs were sequenced, including at least 12 clones from each population of . Many differently expressed sequences were identified in each population, and a total of 45 different sequences were detected. However, the same sequence was present in 15 of 74 plasmids and was found in 3 of the 5 populations, suggesting that some genes may be either more commonly expressed or expressed at a higher level. These data show that many members of the gene family can be expressed in populations of derived from few progenitors and suggest that the regulation of this family is different from that governing expression of the gene family.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26539-0
2004-02-01
2020-10-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/2/mic1500293.html?itemId=/content/journal/micro/10.1099/mic.0.26539-0&mimeType=html&fmt=ahah

References

  1. Aliouat E. M., Dei-Cas E., Billaut P., Dujardin L., Camus D. 1995; Pneumocystitis carinii organisms from in vitro culture are highly infectious to the nude rat. Parasitol Res81:82–85[CrossRef]
    [Google Scholar]
  2. Aviles P., Aliouat E. M., Martinez A., Dei-Cas E., Herreros E., Dujardin L., Gargallo-Viola D. 2000; In vitro pharmacodynamic parameters of sordarin derivatives in comparison with those of marketed compounds against Pneumocystis carinii isolated from rats. Antimicrob Agents Chemother44:1284–1290[CrossRef]
    [Google Scholar]
  3. Barbour A. G., Burman N., Carter C. J., Kitten T., Bergstrom S. 1991; Variable antigen genes of the relapsing fever agent Borrelia hermsii are activated by promoter addition. Mol Microbiol5:489–493[CrossRef]
    [Google Scholar]
  4. Borst P. 1991; Molecular genetics of antigenic variation. Immunol Today12:A29–A33[CrossRef]
    [Google Scholar]
  5. Borst P. 2002; Antigenic variation and allelic exclusion. Cell109:5–8[CrossRef]
    [Google Scholar]
  6. Cline J., Braman J. C., Hogrefe H. H. 1996; PCR fidelity of pfu DNA polymerase and other thermostable DNA polymerases. Nucleic Acids Res24:3546–3551[CrossRef]
    [Google Scholar]
  7. Cushion M. T. 1989; In vitro studies of Pneumocystis carinii . J Protozool36:45–52[CrossRef]
    [Google Scholar]
  8. Cushion M. T., Ebbets D. 1990; Growth and metabolism of Pneumocystis carinii in axenic culture. J Clin Microbiol28:1385–1394
    [Google Scholar]
  9. Cushion M. T., Walzer P. D. 1984a; Cultivation of Pneumocystis carinii in lung-derived cell lines. J Infect Dis149:644[CrossRef]
    [Google Scholar]
  10. Cushion M. T., Walzer P. D. 1984b; Growth and serial passage of Pneumocystis carinii in the A549 cell line. Infect Immun44:245–251
    [Google Scholar]
  11. Cushion M. T., Ruffolo J. J., Linke M. J., Waltzer P. D. 1985a; Pneumocystis carinii : growth variables and estimates in the A549 and WI-38 VA13 human cell lines. Exp Parasitol60:43–54[CrossRef]
    [Google Scholar]
  12. Cushion M. T., Stanforth D., Linke M. J., Waltzer P. D. 1985b; Method of testing the susceptibility of Pneumocystis carinii to antimicrobial agents in vitro. Antimicrob Agents Chemother28:796–801[CrossRef]
    [Google Scholar]
  13. Cushion M. T., Ruffolo J. J., Walzer P. D. 1988; Analysis of the developmental stages of Pneumocystis carinii , in vitro . Lab Invest58:324–331
    [Google Scholar]
  14. Demanche C., Berthelemy M., Petit T., Polack B., Wakefield A. E., Dei-Cas E., Guillot J. 2001; Phylogeny of Pneumocystis carinii from 18 primate species confirms host specificity and suggests coevolution. J Clin Microbiol39:2126–2133[CrossRef]
    [Google Scholar]
  15. Edman J. C., Hatton T. W., Nam M., Turner R., Mei Q., Angus C. W., Kovacs J. A. 1996; A single expression site with a conserved leader sequence regulates variation of expression of the Pneumocystis carinii family of major surface glycoprotein genes. DNA Cell Biol15:989–999[CrossRef]
    [Google Scholar]
  16. Gigliotti F., Harmsen A. G., Haidaris C. G., Haidaris P. J. 1993; Pneumocystis carinii is not universally transmissible between mammalian species. Infect Immun61:2886–2890
    [Google Scholar]
  17. Goffeau A., Barrell B. G., Bussey H.. 13 other authors 1996; Life with 6000 genes. Science274: 546563–567
    [Google Scholar]
  18. Jansa S. A., Lundrigan B. L., Tucker P. K. 2003; Tests for positive selection on immune and reproductive genes in closely related species of the murine genus Mus . J Mol Evol56:294–307[CrossRef]
    [Google Scholar]
  19. Keely S. P., Wakefield A. E., Cushion M. T., Smulian A. G., Hall N., Barrell B. G., Stringer J. R. 2001; Detailed structure of Pneumocystis carinii chromosome ends. J Eukaryot Microbiol Suppl118S–120S
    [Google Scholar]
  20. Keely S. P., Cushion M. T., Stringer J. R. 2003; Diversity at the locus associated with transcription of a variable surface antigen of Pneumocystis carinii as an index of population structure and dynamics in infected rats. Infect Immun71:47–60[CrossRef]
    [Google Scholar]
  21. Kutty G., Kovacs J. A. 2003; A single-copy gene encodes Kex1, a serine endoprotease of Pneumocystis jiroveci . Infect Immun71:571–574[CrossRef]
    [Google Scholar]
  22. Lee L. H., Gigliotti F., Wright T. W., Simpson-Haidaris P. J., Weinberg G. A., Haidaris C. G. 2000; Molecular characterization of KEX1, a kexin-like protease in mouse Pneumocystis carinii . Gene242:141–150[CrossRef]
    [Google Scholar]
  23. Lugli E. B., Allen A. G., Wakefield A. E. 1997; A Pneumocystis carinii multi-gene family with homology to subtilisin-like serine proteases. Microbiology143:2223–2236[CrossRef]
    [Google Scholar]
  24. Lugli E. B., Bampton E. T., Ferguson D. J., Wakefield A. E. 1999; Cell surface protease PRT1 identified in the fungal pathogen Pneumocystis carinii . Mol Microbiol31:1723–1733[CrossRef]
    [Google Scholar]
  25. Mazars E., Dei-Cas E. 1998; Epidemiological and taxonomic impact of Pneumocystis biodiversity. FEMS Immunol Med Microbiol22:75–80[CrossRef]
    [Google Scholar]
  26. Merali S., Frevert U., Williams J. H., Chin K., Bryan R., Clarkson A. B. Jr. 1999; Continuous axenic cultivation of Pneumocystis carinii . Proc Natl Acad Sci U S A96:2402–2407[CrossRef]
    [Google Scholar]
  27. Newport G., Kuo A., Flattery A., Gill C., Blake J. J., Kurtz M. B., Abruzzo G. K., Agabian N. 2003; Inactivation of Kex2p diminishes the virulence of Candida albicans . J Biol Chem278:1713–1720[CrossRef]
    [Google Scholar]
  28. Restrepo B. I., Barbour A. G. 1994; Antigen diversity in the bacterium B. hermsii through ‘somatic’ mutations in rearranged vmp genes. Cell78:867–876[CrossRef]
    [Google Scholar]
  29. Rudenko G., Cross M., Borst P. 1998; Changing the end: antigenic variation orchestrated at the telomeres of African trypanosomes. Trends Microbiol6:113–116[CrossRef]
    [Google Scholar]
  30. Russian D. A., Andrawis-Sorial V., Goheen M. P., Edman J. C., Vogel P., Turner R. E., Klivington D. L., Angus C. W., Kovacs J. A. 1999; Characterization of a multicopy family of genes encoding a surface- expressed serine endoprotease in rat Pneumocystis carinii . Proc Assoc Am Physicians111:347–356[CrossRef]
    [Google Scholar]
  31. Sambrook J. F., Fristch E. F., Maniatis T. 1989; Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  32. Sidman C. L., Roths J. B. 1994; New animal models for Pneumocystis carinii research: immunodeficient mice. In Pneumocystis carinii Pneumonia vol. 69 pp223–235 Edited by Walzer P. D.. New York: Marcel Dekker;
    [Google Scholar]
  33. Siezen R. J., Creemers J. W., Van de Ven W. J. 1994; Homology modelling of the catalytic domain of human furin. A model for the eukaryotic subtilisin-like proprotein convertases. Eur J Biochem222:255–266[CrossRef]
    [Google Scholar]
  34. Stringer J. R. 2002; Pneumocystis . Int J Med Microbiol292:391–404[CrossRef]
    [Google Scholar]
  35. Stringer J. R., Keely S. P. 2001; Genetics of surface antigen expression in Pneumocystis carinii . Infect Immun69:627–639[CrossRef]
    [Google Scholar]
  36. Sunkin S. M., Stringer J. R. 1996; Translocation of surface antigen genes to a unique telomeric expression site in Pneumocystis carinii . Mol Microbiol19:283–295[CrossRef]
    [Google Scholar]
  37. Sunkin S. M., Stringer J. R. 1997; Residence at the expression site is necessary and sufficient for the transcription of surface antigen genes of Pneumocystis carinii . Mol Microbiol25:147–160[CrossRef]
    [Google Scholar]
  38. Sunkin S. M., Linke M. J., McCormack F. X., Walzer P. D., Stringer J. R. 1998; Identification of a putative precursor to the major surface glycoprotein of Pneumocystis carinii . Infect Immun66:741–746
    [Google Scholar]
  39. Underwood A. P., Louis E. J., Borts R. H., Stringer J. R., Wakefield A. E. 1996; Pneumocystis carinii telomere repeats are composed of TTAGGG and the subtelomeric sequence contains a gene encoding the major surface glycoprotein. Mol Microbiol19:273–281[CrossRef]
    [Google Scholar]
  40. Wada M., Nakamura Y. 1999; Immunological characterization of surface subtilisin-like protease (SSP) of Pneumocystis carinii . J Eukaryot Microbiol46:151S–152S
    [Google Scholar]
  41. Wada M., Sunkin S. M., Stringer J. R., Nakamura Y. 1995; Antigenic variation by positional control of major surface glycoprotein gene expression in Pneumocystis carinii . J Infect Dis171:1563–1568[CrossRef]
    [Google Scholar]
  42. Wakefield A. E. 1994; Detection of DNA sequences identical to Pneumocystis carinii in samples of ambient air. J Eukaryot Microbiol41:116S
    [Google Scholar]
  43. Wakefield A. E., Pixley F. J., Banerji S., Sinclair K., Miller R. F., Moxon E. R., Hopkin J. M. 1990; Amplification of mitochondrial ribosomal RNA sequences from Pneumocystis carinii DNA of rat and human origin. Mol Biochem Parasitol43:69–76[CrossRef]
    [Google Scholar]
  44. Wakefield A. E., Stringer J. R., Tamburrini E., Dei-Cas E. 1998; Genetics, metabolism and host specificity of Pneumocystis carinii . Med Mycol36 :Suppl. 1183–193
    [Google Scholar]
  45. Woelk C. H., Pybus O. G., Jin L., Brown D. W., Holmes E. C. 2002; Increased positive selection pressure in persistent (SSPE) versus acute measles virus infections. J Gen Virol83:1419–1430
    [Google Scholar]
  46. Wood V., Gwilliam R., Rajandream M. A.. 132 other authors 2002; The genome sequence of Schizosaccharomyces pombe . Nature415:871–880 erratum 421, 94
    [Google Scholar]
  47. Zhang J. R., Hardham J. M., Barbour A. G., Norris S. J. 1997; Antigenic variation in Lyme disease borreliae by promiscuous recombination of VMP-like sequence cassettes. Cell89:275–285 erratum 96, 447
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26539-0
Loading
/content/journal/micro/10.1099/mic.0.26539-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error