1887

Abstract

biofilm formation on polymer surfaces is considered a major pathogenicity factor in foreign-body-associated infections. Previously, the 148 kDa autolysin AtlE from . , which is involved in the initial attachment of the cells to polymer surfaces and also binds to the extracellular matrix protein vitronectin, was characterized. Here, the characterization of a novel autolysin/adhesin (Aae) in . s is described. Aae was identified as a 35 kDa surface-associated protein that has bacteriolytic activity and binds vitronectin. Its N-terminal amino acid sequence was determined and the respective gene, , was cloned. DNA-sequence analysis revealed that encodes a deduced protein of 324 amino acids with a predicted molecular mass of 35 kDa. Aae contains three repetitive sequences in its N-terminal portion. These repeats comprise features of a putative peptidoglycan binding domain (LysM domain) found in a number of enzymes involved in cell-wall metabolism and also in some adhesins. Expression of by and subsequent analysis revealed that Aae possesses bacteriolytic activity and adhesive properties. The interaction of Aae with fibrinogen, fibronectin and vitronectin was found to be dose-dependent and saturable and to occur with high affinity, by using the real-time Biomolecular Interaction Analysis (BIA). Aae binds to the A- and B-chains of fibrinogen and to the 29 kDa N-terminal fragment of fibronectin. In conclusion, Aae is a surface-associated protein with bacteriolytic and adhesive properties representing a new member of the staphylococcal autolysin/adhesins potentially involved in colonization.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26527-0
2003-10-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/10/mic1492769.html?itemId=/content/journal/micro/10.1099/mic.0.26527-0&mimeType=html&fmt=ahah

References

  1. Allignet, J., England, P., Old, I. & El Solh, N. ( 2002; ). Several regions of the repeat domain of the Staphylococcus caprae autolysin, AtlC, are involved in fibronectin binding. FEMS Microbiol Lett 213, 193–197.[CrossRef]
    [Google Scholar]
  2. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef]
    [Google Scholar]
  3. Baddour, L. M., Barker, L. P., Christensen, G. D., Parisi, J. T. & Simpson, W. A. ( 1990; ). Phenotypic variation of Staphylococcus epidermidis in infection of transvenous endocardial pacemaker electrodes. J Clin Microbiol 28, 676–679.
    [Google Scholar]
  4. Balachandran, P., Hollingshead, S. K., Paton, J. C. & Briles, D. E. ( 2001; ). The autolytic enzyme LytA of Streptococcus pneumoniae is not responsible for releasing pneumolysin. J Bacteriol 183, 3108–3116.[CrossRef]
    [Google Scholar]
  5. Bateman, A. & Bycroft, M. ( 2000; ). The structure of a LysM domain from E. coli membrane-bound lytic murein transglycosylase D (MltD). J Mol Biol 299, 1113–1119.[CrossRef]
    [Google Scholar]
  6. Bateman, A., Birney, E., Durbin, R., Eddy, S. R., Finn, R. D. & Sonnhammer, E. L. ( 1999; ). Pfam 3.1: 1313 multiple alignments and profile HMMs match the majority of proteins. Nucleic Acids Res 27, 260–262.[CrossRef]
    [Google Scholar]
  7. Beliveau, C., Potvin, C., Trudel, J., Asselin, A. & Bellemare, G. ( 1991; ). Cloning, sequencing, and expression in Escherichia coli of a Streptococcus faecalis autolysin. J Bacteriol 173, 5619–5623.
    [Google Scholar]
  8. Berry, A. M. & Paton, J. C. ( 2000; ). Additive attenuation of virulence of Streptococcus pneumoniae by mutation of the genes encoding pneumolysin and other putative pneumococcal virulence proteins. Infect Immun 68, 133–140.[CrossRef]
    [Google Scholar]
  9. Berry, A. M., Yother, J., Briles, D. E., Hansman, D. & Paton, J. C. ( 1989; ). Reduced virulence of a defined pneumolysin-negative mutant of Streptococcus pneumoniae. Infect Immun 57, 2037–2042.
    [Google Scholar]
  10. Bubert, A., Kuhn, M., Goebel, W. & Kohler, S. ( 1992; ). Structural and functional properties of the p60 proteins from different Listeria species. J Bacteriol 174, 8166–8171.
    [Google Scholar]
  11. Buist, G., Kok, J., Leenhouts, K. J., Dabrowska, M., Venema, G. & Haandrikman, A. J. ( 1995; ). Molecular cloning and nucleotide sequence of the gene encoding the major peptidoglycan hydrolase of Lactococcus lactis, a muramidase needed for cell separation. J Bacteriol 177, 1554–1563.
    [Google Scholar]
  12. Canvin, J. R., Marvin, A. P., Sivakumaran, M., Paton, J. C., Boulnois, G. J., Andrew, P. W. & Mitchell, T. J. ( 1995; ). The role of pneumolysin and autolysin in the pathology of pneumonia and septicemia in mice infected with a type 2 pneumococcus. J Infect Dis 172, 119–123.[CrossRef]
    [Google Scholar]
  13. Chhatwal, G. S., Preissner, K. T., Muller-Berghaus, G. & Blobel, H. ( 1987; ). Specific binding of the human S protein (vitronectin) to streptococci, Staphylococcus aureus, and Escherichia coli. Infect Immun 55, 1878–1883.
    [Google Scholar]
  14. Cottonaro, C. N., Roohk, H. V., Shimizu, G. & Sperling, D. R. ( 1981; ). Quantitation and characterization of competitive protein binding to polymers. Trans Am Soc Artif Intern Organs 27, 391–395.
    [Google Scholar]
  15. Diaz, E., Lopez, R. & Garcia, J. L. ( 1992; ). Role of the major pneumococcal autolysin in the atypical response of a clinical isolate of Streptococcus pneumoniae. J Bacteriol 174, 5508–5515.
    [Google Scholar]
  16. Dickinson, G. M. & Bisno, A. L. ( 1989; ). Infections associated with indwelling devices: concepts of pathogenesis; infections associated with intravascular devices. Antimicrob Agents Chemother 33, 597–601.[CrossRef]
    [Google Scholar]
  17. Doolittle, R. F. ( 1984; ). Fibrinogen and fibrin. Annu Rev Biochem 53, 195–229.[CrossRef]
    [Google Scholar]
  18. Downer, R., Roche, F., Park, P. W., Mecham, R. P. & Foster, T. J. ( 2002; ). The elastin-binding protein of Staphylococcus aureus (EbpS) is expressed at the cell surface as an integral membrane protein and not as a cell wall-associated protein. J Biol Chem 277, 243–250.[CrossRef]
    [Google Scholar]
  19. Doyle, R. J., Chaloupka, J. & Vinter, V. ( 1988; ). Turnover of cell walls in microorganisms. Microbiol Rev 52, 554–567.
    [Google Scholar]
  20. Fey, P. D., Ulphani, J. S., Götz, F., Heilmann, C., Mack, D. & Rupp, M. E. ( 1999; ). Characterization of the relationship between polysaccharide intercellular adhesin and hemagglutination in Staphylococcus epidermidis. J Infect Dis 179, 1561–1564.[CrossRef]
    [Google Scholar]
  21. Flock, M. & Flock, J. I. ( 2001; ). Rebinding of extracellular adherence protein Eap to Staphylococcus aureus can occur through a surface-bound neutral phosphatase. J Bacteriol 183, 3999–4003.[CrossRef]
    [Google Scholar]
  22. Foster, S. J. ( 1995; ). Molecular characterization and functional analysis of the major autolysin of Staphylococcus aureus 8325/4. J Bacteriol 177, 5723–5725.
    [Google Scholar]
  23. George, R., Leibrock, L. & Epstein, M. ( 1979; ). Long-term analysis of cerebrospinal fluid shunt infections. A 25-year experience. J Neurosurg 51, 804–811.[CrossRef]
    [Google Scholar]
  24. Hartleib, J., Kohler, N., Dickinson, R. B. & 7 other authors ( 2000; ). Protein A is the von Willebrand factor binding protein on Staphylococcus aureus. Blood 96, 2149–2156.
    [Google Scholar]
  25. Hayashi, M. ( 1993; ). Vitronectins: from vertebrates to invertebrates. In Biology of Vitronectins and their Receptors, pp. 3–11. Edited by K. T. Preissner, S. Rosenblatt, C. Kost, J. Wegerhoff & D. F. Mosher. Amsterdam: Excerpta Medica.
  26. Heilmann, C., Gerke, C., Perdreau-Remington, F. & Götz, F. ( 1996a; ). Characterization of Tn917 insertion mutants of Staphylococcus epidermidis affected in biofilm formation. Infect Immun 64, 277–282.
    [Google Scholar]
  27. Heilmann, C., Schweitzer, O., Gerke, C., Vanittanakom, N., Mack, D. & Götz, F. ( 1996b; ). Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis. Mol Microbiol 20, 1083–1091.[CrossRef]
    [Google Scholar]
  28. Heilmann, C., Hussain, M., Peters, G. & Götz, F. ( 1997; ). Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Mol Microbiol 24, 1013–1024.[CrossRef]
    [Google Scholar]
  29. Hell, W., Meyer, H. G. & Gatermann, S. G. ( 1998; ). Cloning of aas, a gene encoding a Staphylococcus saprophyticus surface protein with adhesive and autolytic properties. Mol Microbiol 29, 871–881.[CrossRef]
    [Google Scholar]
  30. Herrmann, M., Vaudaux, P. E., Pittet, D., Auckenthaler, R., Lew, P. D., Schumacher-Perdreau, F., Peters, G. & Waldvogel, F. A. ( 1988; ). Fibronectin, fibrinogen, and laminin act as mediators of adherence of clinical staphylococcal isolates to foreign material. J Infect Dis 158, 693–701.[CrossRef]
    [Google Scholar]
  31. Herrmann, M., Suchard, S. J., Boxer, L. A., Waldvogel, F. A. & Lew, P. D. ( 1991; ). Thrombospondin binds to Staphylococcus aureus and promotes staphylococcal adherence to surfaces. Infect Immun 59, 279–288.
    [Google Scholar]
  32. Herrmann, M., Hartleib, J., Kehrel, B., Montgomery, R. R., Sixma, J. J. & Peters, G. ( 1997; ). Interaction of von Willebrand factor with Staphylococcus aureus. J Infect Dis 176, 984–991.[CrossRef]
    [Google Scholar]
  33. Höltje, J. V. ( 1996; ). A hypothetical holoenzyme involved in the replication of the murein sacculus of Escherichia coli. Microbiology 142, 1911–1918.[CrossRef]
    [Google Scholar]
  34. Hussain, M., Becker, K., von Eiff, C., Schrenzel, J., Peters, G. & Herrmann, M. ( 2001; ). Identification and characterization of a novel 38·5-kilodalton cell surface protein of Staphylococcus aureus with extended-spectrum binding activity for extracellular matrix and plasma proteins. J Bacteriol 183, 6778–6786.[CrossRef]
    [Google Scholar]
  35. Hussain, M., Haggar, A., Heilmann, C., Peters, G., Flock, J.-I. & Herrmann, M. ( 2002; ). Insertional inactivation of eap in Staphylococcus aureus strain Newman confers reduced staphylococcal binding to fibroblasts. Infect Immun 70, 2933–2940.[CrossRef]
    [Google Scholar]
  36. Inman, R. D., Gallegos, K. V., Brause, B. D., Redecha, P. B. & Christian, C. L. ( 1984; ). Clinical and microbial features of prosthetic joint infection. Am J Med 77, 47–53.
    [Google Scholar]
  37. Joris, B., Englebert, S., Chu, C. P., Kariyama, R., Daneo-Moore, L., Shockman, G. D. & Ghuysen, J. M. ( 1992; ). Modular design of the Enterococcus hirae muramidase-2 and Streptococcus faecalis autolysin. FEMS Microbiol Lett 70, 257–264.
    [Google Scholar]
  38. Karchmer, A. W., Archer, G. L. & Dismukes, W. E. ( 1983; ). Staphylococcus epidermidis causing prosthetic valve endocarditis: microbiologic and clinical observations as guides to therapy. Ann Intern Med 98, 447–455.[CrossRef]
    [Google Scholar]
  39. Karlsson, R., Michaelsson, A. & Mattsson, L. ( 1991; ). Kinetic analysis of monoclonal antibody-antigen interactions with a new biosensor based analytical system. J Immunol Methods 145, 229–240.[CrossRef]
    [Google Scholar]
  40. Kochwa, S., Litwak, R. S., Rosenfield, R. E. & Leonard, E. F. ( 1977; ). Blood elements at foreign surfaces: a biochemical approach to the study of the adsorption of plasma proteins. Ann N Y Acad Sci 283, 37–49.[CrossRef]
    [Google Scholar]
  41. Kreikemeyer, B., Martin, D. R. & Chhatwal, G. S. ( 1999; ). SfbII protein, a fibronectin binding surface protein of group A streptococci, is a serum opacity factor with high serotype-specific apolipoproteinase activity. FEMS Microbiol Lett 178, 305–311.[CrossRef]
    [Google Scholar]
  42. Kristinsson, K. G. ( 1989; ). Adherence of staphylococci to intravascular catheters. J Med Microbiol 28, 249–257.[CrossRef]
    [Google Scholar]
  43. Kuhn, M. & Goebel, W. ( 1989; ). Identification of an extracellular protein of Listeria monocytogenes possibly involved in intracellular uptake by mammalian cells. Infect Immun 57, 55–61.
    [Google Scholar]
  44. Lang, S., Livesley, M. A., Lambert, P. A., Littler, W. A. & Elliott, T. S. ( 2000; ). Identification of a novel antigen from Staphylococcus epidermidis. FEMS Immunol Med Microbiol 29, 213–220.[CrossRef]
    [Google Scholar]
  45. Lopes, J. D., dos Reis, M. & Brentani, R. R. ( 1985; ). Presence of laminin receptors in Staphylococcus aureus. Science 229, 275–277.[CrossRef]
    [Google Scholar]
  46. Mack, D., Fischer, W., Krokotsch, A., Leopold, K., Hartmann, R., Egge, H. & Laufs, R. ( 1996; ). The intercellular adhesin involved in biofilm accumulation of Staphylococcus epidermidis is a linear β-1,6-linked glucosaminoglycan: purification and structural analysis. J Bacteriol 178, 175–183.
    [Google Scholar]
  47. Mani, N., Baddour, L. M., Offutt, D. Q., Vijaranakul, U., Nadakavukaren, M. J. & Jayaswal, R. K. ( 1994; ). Autolysis-defective mutant of Staphylococcus aureus: pathological considerations, genetic mapping, and electron microscopic studies. Infect Immun 62, 1406–1409.
    [Google Scholar]
  48. Margot, P., Wahlen, M., Gholamhoseinian, A., Piggot, P., Karamata, D. & Gholamhuseinian, A. ( 1998; ). The lytE gene of Bacillus subtilis 168 encodes a cell wall hydrolase. J Bacteriol 180, 749–752; Erratum 180, 2272.
    [Google Scholar]
  49. Margot, P., Pagni, M. & Karamata, D. ( 1999; ). Bacillus subtilis 168 gene lytF encodes a γ-d-glutamate-meso-diaminopimelate muropeptidase expressed by the alternative vegetative sigma factor, σ D. Microbiology 145, 57–65.[CrossRef]
    [Google Scholar]
  50. Marmur, J. ( 1961; ). A procedure for isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3, 208–218.[CrossRef]
    [Google Scholar]
  51. McGavin, M. J., Raucci, G., Gurusiddappa, S. & Höök, M. ( 1991; ). Fibronectin binding determinants of the Staphylococcus aureus fibronectin receptor. J Biol Chem 266, 8343–8347.
    [Google Scholar]
  52. Milohanic, E., Pron, B., the European Listeria Genome Consortium, Berche, P. & Gaillard, J.-L. ( 2000; ). Identification of new loci involved in adhesion of Listeria monocytogenes to eukaryotic cells. Microbiology 146, 731–739.
    [Google Scholar]
  53. Ni Eidhin, D., Perkins, S., Francois, P., Vaudaux, P., Höök, M. & Foster, T. J. ( 1998; ). Clumping factor B (ClfB), a new surface-located fibrinogen-binding adhesin of Staphylococcus aureus. Mol Microbiol 30, 245–257.[CrossRef]
    [Google Scholar]
  54. Nilsson, M., Frykberg, L., Flock, J. I., Pei, L., Lindberg, M. & Guss, B. ( 1998; ). A fibrinogen-binding protein of Staphylococcus epidermidis. Infect Immun 66, 2666–2673.
    [Google Scholar]
  55. Oshida, T., Sugai, M., Komatsuzawa, H., Hong, Y. M., Suginaka, H. & Tomasz, A. ( 1995; ). A Staphylococcus aureus autolysin that has an N-acetylmuramoyl-l-alanine amidase domain and an endo-β-N-acetylglucosaminidase domain: cloning, sequence analysis, and characterization. Proc Natl Acad Sci U S A 92, 285–289.[CrossRef]
    [Google Scholar]
  56. Palma, M., Haggar, A. & Flock, J. I. ( 1999; ). Adherence of Staphylococcus aureus is enhanced by an endogenous secreted protein with broad binding activity. J Bacteriol 181, 2840–2845.
    [Google Scholar]
  57. Palma, M., Shannon, O., Quezada, H. C., Berg, A. & Flock, J. I. ( 2001; ). Extracellular fibrinogen-binding protein, Efb, from Staphylococcus aureus blocks platelet aggregation due to its binding to the α-chain. J Biol Chem 276, 31691–31697.[CrossRef]
    [Google Scholar]
  58. Pancholi, V. & Fischetti, V. A. ( 1993; ). Glyceraldehyde-3-phosphate dehydrogenase on the surface of group A streptococci is also an ADP-ribosylating enzyme. Proc Natl Acad Sci U S A 90, 8154–8158.[CrossRef]
    [Google Scholar]
  59. Pankov, R. & Yamada, K. M. ( 2002; ). Fibronectin at a glance. J Cell Sci 115, 3861–3863.[CrossRef]
    [Google Scholar]
  60. Pearson, W. R. & Lipman, D. J. ( 1988; ). Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A 85, 2444–2448.[CrossRef]
    [Google Scholar]
  61. Pei, L. & Flock, J. I. ( 2001; ). Lack of fbe, the gene for a fibrinogen-binding protein from Staphylococcus epidermidis, reduces its adherence to fibrinogen coated surfaces. Microb Pathog 31, 185–193.[CrossRef]
    [Google Scholar]
  62. Pei, L., Palma, M., Nilsson, M., Guss, B. & Flock, J. I. ( 1999; ). Functional studies of a fibrinogen binding protein from Staphylococcus epidermidis. Infect Immun 67, 4525–4530.
    [Google Scholar]
  63. Peschel, A., Otto, M., Jack, R. W., Kalbacher, H., Jung, G. & Götz, F. ( 1999; ). Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. J Biol Chem 274, 8405–8410.[CrossRef]
    [Google Scholar]
  64. Peters, G., Locci, R. & Pulverer, G. ( 1982; ). Adherence and growth of coagulase-negative staphylococci on surfaces of intravenous catheters. J Infect Dis 146, 479–482.[CrossRef]
    [Google Scholar]
  65. Peters, G., Saborowski, F., Locci, R. & Pulverer, G. ( 1984; ). Investigations on staphylococcal infection of transvenous endocardial pacemaker electrodes. Am Heart J 108, 359–365.[CrossRef]
    [Google Scholar]
  66. Ponting, C. P., Aravind, L., Schultz, J., Bork, P. & Koonin, E. V. ( 1999; ). Eukaryotic signalling domain homologues in archaea and bacteria. Ancient ancestry and horizontal gene transfer. J Mol Biol 289, 729–745.[CrossRef]
    [Google Scholar]
  67. Rakonjac, J. V., Robbins, J. C. & Fischetti, V. A. ( 1995; ). DNA sequence of the serum opacity factor of group A streptococci: identification of a fibronectin-binding repeat domain. Infect Immun 63, 622–631.
    [Google Scholar]
  68. Rupp, M. E., Fey, P. D., Heilmann, C. & Götz, F. ( 2001; ). Characterization of the importance of Staphylococcus epidermidis autolysin and polysaccharide intercellular adhesin in the pathogenesis of intravascular catheter-associated infection in a rat model. J Infect Dis 183, 1038–1042.[CrossRef]
    [Google Scholar]
  69. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  70. Schneewind, O., Mihaylova-Petkov, D. & Model, P. ( 1993; ). Cell wall sorting signals in surface proteins of gram-positive bacteria. EMBO J 12, 4803–4811.
    [Google Scholar]
  71. Schwarz-Linek, U., Werner, J. M., Pickford, A. R. & 8 other authors ( 2003; ). Pathogenic bacteria attach to human fibronectin through a tandem β-zipper. Nature 423, 177–181.[CrossRef]
    [Google Scholar]
  72. Vaudaux, P., Pittet, D., Haeberli, A., Huggler, E., Nydegger, U. E., Lew, D. P. & Waldvogel, F. A. ( 1989; ). Host factors selectively increase staphylococcal adherence on inserted catheters: a role for fibronectin and fibrinogen or fibrin. J Infect Dis 160, 865–875.[CrossRef]
    [Google Scholar]
  73. Wann, E. R., Gurusiddappa, S. & Höök, M. ( 2000; ). The fibronectin-binding MSCRAMM FnbpA of Staphylococcus aureus is a bifunctional protein that also binds to fibrinogen. J Biol Chem 275, 13863–13871.[CrossRef]
    [Google Scholar]
  74. Williams, R. J., Henderson, B., Sharp, L. J. & Nair, S. P. ( 2002; ). Identification of a fibronectin-binding protein from Staphylococcus epidermidis. Infect Immun 70, 6805–6810.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26527-0
Loading
/content/journal/micro/10.1099/mic.0.26527-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error