1887

Abstract

biofilm formation on polymer surfaces is considered a major pathogenicity factor in foreign-body-associated infections. Previously, the 148 kDa autolysin AtlE from . , which is involved in the initial attachment of the cells to polymer surfaces and also binds to the extracellular matrix protein vitronectin, was characterized. Here, the characterization of a novel autolysin/adhesin (Aae) in . s is described. Aae was identified as a 35 kDa surface-associated protein that has bacteriolytic activity and binds vitronectin. Its N-terminal amino acid sequence was determined and the respective gene, , was cloned. DNA-sequence analysis revealed that encodes a deduced protein of 324 amino acids with a predicted molecular mass of 35 kDa. Aae contains three repetitive sequences in its N-terminal portion. These repeats comprise features of a putative peptidoglycan binding domain (LysM domain) found in a number of enzymes involved in cell-wall metabolism and also in some adhesins. Expression of by and subsequent analysis revealed that Aae possesses bacteriolytic activity and adhesive properties. The interaction of Aae with fibrinogen, fibronectin and vitronectin was found to be dose-dependent and saturable and to occur with high affinity, by using the real-time Biomolecular Interaction Analysis (BIA). Aae binds to the A- and B-chains of fibrinogen and to the 29 kDa N-terminal fragment of fibronectin. In conclusion, Aae is a surface-associated protein with bacteriolytic and adhesive properties representing a new member of the staphylococcal autolysin/adhesins potentially involved in colonization.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26527-0
2003-10-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/10/mic1492769.html?itemId=/content/journal/micro/10.1099/mic.0.26527-0&mimeType=html&fmt=ahah

References

  1. Allignet J., England P., Old I., El Solh N.. 2002; Several regions of the repeat domain of the Staphylococcus caprae autolysin, AtlC, are involved in fibronectin binding. FEMS Microbiol Lett213:193–197
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402
    [Google Scholar]
  3. Baddour L. M., Barker L. P., Christensen G. D., Parisi J. T., Simpson W. A.. 1990; Phenotypic variation of Staphylococcus epidermidis in infection of transvenous endocardial pacemaker electrodes. J Clin Microbiol28:676–679
    [Google Scholar]
  4. Balachandran P., Hollingshead S. K., Paton J. C., Briles D. E.. 2001; The autolytic enzyme LytA of Streptococcus pneumoniae is not responsible for releasing pneumolysin. J Bacteriol183:3108–3116
    [Google Scholar]
  5. Bateman A., Bycroft M.. 2000; The structure of a LysM domain from E . coli membrane-bound lytic murein transglycosylase D (MltD. J Mol Biol299:1113–1119
    [Google Scholar]
  6. Bateman A., Birney E., Durbin R., Eddy S. R., Finn R. D., Sonnhammer E. L.. 1999; Pfam 3.1: 1313 multiple alignments and profile HMMs match the majority of proteins. Nucleic Acids Res27:260–262
    [Google Scholar]
  7. Beliveau C., Potvin C., Trudel J., Asselin A., Bellemare G.. 1991; Cloning, sequencing, and expression in Escherichia coli of a Streptococcus faecalis autolysin. J Bacteriol173:5619–5623
    [Google Scholar]
  8. Berry A. M., Paton J. C.. 2000; Additive attenuation of virulence of Streptococcus pneumoniae by mutation of the genes encoding pneumolysin and other putative pneumococcal virulence proteins. Infect Immun68:133–140
    [Google Scholar]
  9. Berry A. M., Yother J., Briles D. E., Hansman D., Paton J. C.. 1989; Reduced virulence of a defined pneumolysin-negative mutant of Streptococcus pneumoniae . Infect Immun57:2037–2042
    [Google Scholar]
  10. Bubert A., Kuhn M., Goebel W., Kohler S.. 1992; Structural and functional properties of the p60 proteins from different Listeria species. J Bacteriol174:8166–8171
    [Google Scholar]
  11. Buist G., Kok J., Leenhouts K. J., Dabrowska M., Venema G., Haandrikman A. J.. 1995; Molecular cloning and nucleotide sequence of the gene encoding the major peptidoglycan hydrolase of Lactococcus lactis , a muramidase needed for cell separation. J Bacteriol177:1554–1563
    [Google Scholar]
  12. Canvin J. R., Marvin A. P., Sivakumaran M., Paton J. C., Boulnois G. J., Andrew P. W., Mitchell T. J.. 1995; The role of pneumolysin and autolysin in the pathology of pneumonia and septicemia in mice infected with a type 2 pneumococcus . J Infect Dis172:119–123
    [Google Scholar]
  13. Chhatwal G. S., Preissner K. T., Muller-Berghaus G., Blobel H.. 1987; Specific binding of the human S protein (vitronectin) to streptococci, Staphylococcus aureus , and Escherichia coli . Infect Immun55:1878–1883
    [Google Scholar]
  14. Cottonaro C. N., Roohk H. V., Shimizu G., Sperling D. R.. 1981; Quantitation and characterization of competitive protein binding to polymers. Trans Am Soc Artif Intern Organs27:391–395
    [Google Scholar]
  15. Diaz E., Lopez R., Garcia J. L.. 1992; Role of the major pneumococcal autolysin in the atypical response of a clinical isolate of Streptococcus pneumoniae . J Bacteriol174:5508–5515
    [Google Scholar]
  16. Dickinson G. M., Bisno A. L.. 1989; Infections associated with indwelling devices: concepts of pathogenesis; infections associated with intravascular devices. Antimicrob Agents Chemother33:597–601
    [Google Scholar]
  17. Doolittle R. F.. 1984; Fibrinogen and fibrin. Annu Rev Biochem53:195–229
    [Google Scholar]
  18. Downer R., Roche F., Park P. W., Mecham R. P., Foster T. J.. 2002; The elastin-binding protein of Staphylococcus aureus (EbpS) is expressed at the cell surface as an integral membrane protein and not as a cell wall-associated protein. J Biol Chem277:243–250
    [Google Scholar]
  19. Doyle R. J., Chaloupka J., Vinter V.. 1988; Turnover of cell walls in microorganisms. Microbiol Rev52:554–567
    [Google Scholar]
  20. Fey P. D., Ulphani J. S., Götz F., Heilmann C., Mack D., Rupp M. E.. 1999; Characterization of the relationship between polysaccharide intercellular adhesin and hemagglutination in Staphylococcus epidermidis . J Infect Dis179:1561–1564
    [Google Scholar]
  21. Flock M., Flock J. I.. 2001; Rebinding of extracellular adherence protein Eap to Staphylococcus aureus can occur through a surface-bound neutral phosphatase. J Bacteriol183:3999–4003
    [Google Scholar]
  22. Foster S. J.. 1995; Molecular characterization and functional analysis of the major autolysin of Staphylococcus aureus 8325/4. J Bacteriol177:5723–5725
    [Google Scholar]
  23. George R., Leibrock L., Epstein M.. 1979; Long-term analysis of cerebrospinal fluid shunt infections. A 25-year experience. J Neurosurg51:804–811
    [Google Scholar]
  24. Hartleib J., Kohler N., Dickinson R. B.. 7 other authors 2000; Protein A is the von Willebrand factor binding protein on Staphylococcus aureus . Blood96:2149–2156
    [Google Scholar]
  25. Hayashi M.. 1993; Vitronectins: from vertebrates to invertebrates. In Biology of Vitronectins and their Receptors pp 3–11 Edited by Preissner K. T., Rosenblatt S., Kost C., Wegerhoff J., Mosher D. F. Amsterdam: Excerpta Medica;
    [Google Scholar]
  26. Heilmann C., Gerke C., Perdreau-Remington F., Götz F.. 1996a; Characterization of Tn 917 insertion mutants of Staphylococcus epidermidis affected in biofilm formation. Infect Immun64:277–282
    [Google Scholar]
  27. Heilmann C., Schweitzer O., Gerke C., Vanittanakom N., Mack D., Götz F.. 1996b; Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis . Mol Microbiol20:1083–1091
    [Google Scholar]
  28. Heilmann C., Hussain M., Peters G., Götz F.. 1997; Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Mol Microbiol24:1013–1024
    [Google Scholar]
  29. Hell W., Meyer H. G., Gatermann S. G.. 1998; Cloning of aas , a gene encoding a Staphylococcus saprophyticus surface protein with adhesive and autolytic properties. Mol Microbiol29:871–881
    [Google Scholar]
  30. Herrmann M., Vaudaux P. E., Pittet D., Auckenthaler R., Lew P. D., Schumacher-Perdreau F., Peters G., Waldvogel F. A.. 1988; Fibronectin, fibrinogen, and laminin act as mediators of adherence of clinical staphylococcal isolates to foreign material. J Infect Dis158:693–701
    [Google Scholar]
  31. Herrmann M., Suchard S. J., Boxer L. A., Waldvogel F. A., Lew P. D.. 1991; Thrombospondin binds to Staphylococcus aureus and promotes staphylococcal adherence to surfaces. Infect Immun59:279–288
    [Google Scholar]
  32. Herrmann M., Hartleib J., Kehrel B., Montgomery R. R., Sixma J. J., Peters G.. 1997; Interaction of von Willebrand factor with Staphylococcus aureus . J Infect Dis176:984–991
    [Google Scholar]
  33. Höltje J. V.. 1996; A hypothetical holoenzyme involved in the replication of the murein sacculus of Escherichia coli . Microbiology142:1911–1918
    [Google Scholar]
  34. Hussain M., Becker K., von Eiff C., Schrenzel J., Peters G., Herrmann M.. 2001; Identification and characterization of a novel 38·5-kilodalton cell surface protein of Staphylococcus aureus with extended-spectrum binding activity for extracellular matrix and plasma proteins. J Bacteriol183:6778–6786
    [Google Scholar]
  35. Hussain M., Haggar A., Heilmann C., Peters G., Flock J.-I., Herrmann M.. 2002; Insertional inactivation of eap in Staphylococcus aureus strain Newman confers reduced staphylococcal binding to fibroblasts. Infect Immun70:2933–2940
    [Google Scholar]
  36. Inman R. D., Gallegos K. V., Brause B. D., Redecha P. B., Christian C. L.. 1984; Clinical and microbial features of prosthetic joint infection. Am J Med77:47–53
    [Google Scholar]
  37. Joris B., Englebert S., Chu C. P., Kariyama R., Daneo-Moore L., Shockman G. D., Ghuysen J. M.. 1992; Modular design of the Enterococcus hirae muramidase-2 and Streptococcus faecalis autolysin. FEMS Microbiol Lett70:257–264
    [Google Scholar]
  38. Karchmer A. W., Archer G. L., Dismukes W. E.. 1983; Staphylococcus epidermidis causing prosthetic valve endocarditis: microbiologic and clinical observations as guides to therapy. Ann Intern Med98:447–455
    [Google Scholar]
  39. Karlsson R., Michaelsson A., Mattsson L.. 1991; Kinetic analysis of monoclonal antibody-antigen interactions with a new biosensor based analytical system. J Immunol Methods145:229–240
    [Google Scholar]
  40. Kochwa S., Litwak R. S., Rosenfield R. E., Leonard E. F.. 1977; Blood elements at foreign surfaces: a biochemical approach to the study of the adsorption of plasma proteins. Ann N Y Acad Sci283:37–49
    [Google Scholar]
  41. Kreikemeyer B., Martin D. R., Chhatwal G. S.. 1999; SfbII protein, a fibronectin binding surface protein of group A streptococci, is a serum opacity factor with high serotype-specific apolipoproteinase activity. FEMS Microbiol Lett178:305–311
    [Google Scholar]
  42. Kristinsson K. G.. 1989; Adherence of staphylococci to intravascular catheters. J Med Microbiol28:249–257
    [Google Scholar]
  43. Kuhn M., Goebel W.. 1989; Identification of an extracellular protein of Listeria monocytogenes possibly involved in intracellular uptake by mammalian cells. Infect Immun57:55–61
    [Google Scholar]
  44. Lang S., Livesley M. A., Lambert P. A., Littler W. A., Elliott T. S.. 2000; Identification of a novel antigen from Staphylococcus epidermidis . FEMS Immunol Med Microbiol29:213–220
    [Google Scholar]
  45. Lopes J. D., dos Reis M., Brentani R. R.. 1985; Presence of laminin receptors in Staphylococcus aureus . Science229:275–277
    [Google Scholar]
  46. Mack D., Fischer W., Krokotsch A., Leopold K., Hartmann R., Egge H., Laufs R.. 1996; The intercellular adhesin involved in biofilm accumulation of Staphylococcus epidermidis is a linear β -1,6-linked glucosaminoglycan: purification and structural analysis. J Bacteriol178:175–183
    [Google Scholar]
  47. Mani N., Baddour L. M., Offutt D. Q., Vijaranakul U., Nadakavukaren M. J., Jayaswal R. K.. 1994; Autolysis-defective mutant of Staphylococcus aureus : pathological considerations, genetic mapping, and electron microscopic studies. Infect Immun62:1406–1409
    [Google Scholar]
  48. Margot P., Wahlen M., Gholamhoseinian A., Piggot P., Karamata D., Gholamhuseinian A.. 1998; The lytE gene of Bacillus subtilis 168 encodes a cell wall hydrolase. J Bacteriol180:749–752 Erratum 180, 2272
    [Google Scholar]
  49. Margot P., Pagni M., Karamata D.. 1999; Bacillus subtilis 168 gene lytF encodes a γ -d-glutamate- meso -diaminopimelate muropeptidase expressed by the alternative vegetative sigma factor, σ D. Microbiology145:57–65
    [Google Scholar]
  50. Marmur J.. 1961; A procedure for isolation of deoxyribonucleic acid from microorganisms. J Mol Biol3:208–218
    [Google Scholar]
  51. McGavin M. J., Raucci G., Gurusiddappa S., Höök M.. 1991; Fibronectin binding determinants of the Staphylococcus aureus fibronectin receptor. J Biol Chem266:8343–8347
    [Google Scholar]
  52. Milohanic E., Pron B., the European Listeria Genome Consortium Berche P., Gaillard J.-L.. 2000; Identification of new loci involved in adhesion of Listeria monocytogenes to eukaryotic cells. Microbiology146:731–739
    [Google Scholar]
  53. Ni Eidhin D., Perkins S., Francois P., Vaudaux P., Höök M., Foster T. J.. 1998; Clumping factor B (ClfB), a new surface-located fibrinogen-binding adhesin of Staphylococcus aureus . Mol Microbiol30:245–257
    [Google Scholar]
  54. Nilsson M., Frykberg L., Flock J. I., Pei L., Lindberg M., Guss B.. 1998; A fibrinogen-binding protein of Staphylococcus epidermidis . Infect Immun66:2666–2673
    [Google Scholar]
  55. Oshida T., Sugai M., Komatsuzawa H., Hong Y. M., Suginaka H., Tomasz A.. 1995; A Staphylococcus aureus autolysin that has an N -acetylmuramoyl-l-alanine amidase domain and an endo- β - N -acetylglucosaminidase domain: cloning, sequence analysis, and characterization. Proc Natl Acad Sci U S A92:285–289
    [Google Scholar]
  56. Palma M., Haggar A., Flock J. I.. 1999; Adherence of Staphylococcus aureus is enhanced by an endogenous secreted protein with broad binding activity. J Bacteriol181:2840–2845
    [Google Scholar]
  57. Palma M., Shannon O., Quezada H. C., Berg A., Flock J. I.. 2001; Extracellular fibrinogen-binding protein, Efb, from Staphylococcus aureus blocks platelet aggregation due to its binding to the α -chain. J Biol Chem276:31691–31697
    [Google Scholar]
  58. Pancholi V., Fischetti V. A.. 1993; Glyceraldehyde-3-phosphate dehydrogenase on the surface of group A streptococci is also an ADP-ribosylating enzyme. Proc Natl Acad Sci U S A90:8154–8158
    [Google Scholar]
  59. Pankov R., Yamada K. M.. 2002; Fibronectin at a glance. J Cell Sci115:3861–3863
    [Google Scholar]
  60. Pearson W. R., Lipman D. J.. 1988; Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A85:2444–2448
    [Google Scholar]
  61. Pei L., Flock J. I.. 2001; Lack of fbe , the gene for a fibrinogen-binding protein from Staphylococcus epidermidis , reduces its adherence to fibrinogen coated surfaces. Microb Pathog31:185–193
    [Google Scholar]
  62. Pei L., Palma M., Nilsson M., Guss B., Flock J. I.. 1999; Functional studies of a fibrinogen binding protein from Staphylococcus epidermidis . Infect Immun67:4525–4530
    [Google Scholar]
  63. Peschel A., Otto M., Jack R. W., Kalbacher H., Jung G., Götz F.. 1999; Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. J Biol Chem274:8405–8410
    [Google Scholar]
  64. Peters G., Locci R., Pulverer G.. 1982; Adherence and growth of coagulase-negative staphylococci on surfaces of intravenous catheters. J Infect Dis146:479–482
    [Google Scholar]
  65. Peters G., Saborowski F., Locci R., Pulverer G.. 1984; Investigations on staphylococcal infection of transvenous endocardial pacemaker electrodes. Am Heart J108:359–365
    [Google Scholar]
  66. Ponting C. P., Aravind L., Schultz J., Bork P., Koonin E. V.. 1999; Eukaryotic signalling domain homologues in archaea and bacteria. Ancient ancestry and horizontal gene transfer. J Mol Biol289:729–745
    [Google Scholar]
  67. Rakonjac J. V., Robbins J. C., Fischetti V. A.. 1995; DNA sequence of the serum opacity factor of group A streptococci: identification of a fibronectin-binding repeat domain. Infect Immun63:622–631
    [Google Scholar]
  68. Rupp M. E., Fey P. D., Heilmann C., Götz F.. 2001; Characterization of the importance of Staphylococcus epidermidis autolysin and polysaccharide intercellular adhesin in the pathogenesis of intravascular catheter-associated infection in a rat model. J Infect Dis183:1038–1042
    [Google Scholar]
  69. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  70. Schneewind O., Mihaylova-Petkov D., Model P.. 1993; Cell wall sorting signals in surface proteins of gram-positive bacteria. EMBO J12:4803–4811
    [Google Scholar]
  71. Schwarz-Linek U., Werner J. M., Pickford A. R.. 8 other authors 2003; Pathogenic bacteria attach to human fibronectin through a tandem β -zipper. Nature423:177–181
    [Google Scholar]
  72. Vaudaux P., Pittet D., Haeberli A., Huggler E., Nydegger U. E., Lew D. P., Waldvogel F. A.. 1989; Host factors selectively increase staphylococcal adherence on inserted catheters: a role for fibronectin and fibrinogen or fibrin. J Infect Dis160:865–875
    [Google Scholar]
  73. Wann E. R., Gurusiddappa S., Höök M.. 2000; The fibronectin-binding MSCRAMM FnbpA of Staphylococcus aureus is a bifunctional protein that also binds to fibrinogen. J Biol Chem275:13863–13871
    [Google Scholar]
  74. Williams R. J., Henderson B., Sharp L. J., Nair S. P.. 2002; Identification of a fibronectin-binding protein from Staphylococcus epidermidis . Infect Immun70:6805–6810
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26527-0
Loading
/content/journal/micro/10.1099/mic.0.26527-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error