1887

Abstract

is a food-borne pathogen that can persist and grow under a wide variety of environmental conditions including low pH and high osmolarity. The alternative sigma factor contributes to survival under extreme conditions. The purpose of this study was to identify and confirm specific -dependent genes in and to characterize their expression patterns under various stress conditions. , and were identified as putative -dependent genes based on the presence of a predicted -dependent promoter sequence upstream of each gene. and encode known and putative compatible solute transporter proteins, respectively, and encodes a conjugated bile salt hydrolase (BSH). Reporter fusions and semi-quantitative RT-PCR techniques were used to confirm -dependent regulation of these stress-response genes and to determine their expression patterns in response to environmental stresses. RT-PCR demonstrated that , and transcript levels are reduced in stationary-phase Δ cells relative to levels present in wild-type cells. Furthermore, BSH activity is abolished in a Δ strain. RT-PCR confirmed growth-phase-dependent expression of , with highest levels of expression in stationary-phase cells. The wild-type strain exhibited two- and threefold induction of expression and seven- and fivefold induction of expression following 10 and 15 min exposure to 0·5 M KCl, respectively, as determined by RT-PCR, suggesting rapid induction of activity in exponential-phase upon exposure to salt stress. Single-copy chromosomal reporter fusions also showed significant induction of expression following exposure of exponential-phase cells to increased salt concentrations (0·5 M NaCl or 0·5 M KCl). In conjunction with recent findings that indicate a role for and in virulence, the data presented here provide further evidence of specific -mediated contributions to both environmental stress resistance and intra-host survival in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26526-0
2003-11-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/11/mic1493247.html?itemId=/content/journal/micro/10.1099/mic.0.26526-0&mimeType=html&fmt=ahah

References

  1. Angelidis, A. S., Smith, L. T., Hoffman, L. M. & Smith, G. M. ( 2002; ). Identification of opuC as a chill-activated and osmotically activated carnitine transporter in Listeria monocytogenes. Appl Environ Microbiol 68, 2644–2650.[CrossRef]
    [Google Scholar]
  2. Badger, J. L. & Miller, V. L. ( 1995; ). Role of RpoS in survival of Yersinia enterocolitica to a variety of environmental stresses. J Bacteriol 177, 5370–5373.
    [Google Scholar]
  3. Becker, L. A., Cetin, M. S., Hutkins, R. W. & Benson, A. K. ( 1998; ). Identification of the gene encoding the alternative sigma factor σ B from Listeria monocytogenes and its role in osmotolerance. J Bacteriol 180, 4547–4554.
    [Google Scholar]
  4. Becker, L. A., Evans, S. N., Hutkins, R. W. & Benson, A. K. ( 2000; ). Role of σ B in adaptation of Listeria monocytogenes to growth at low temperature. J Bacteriol 182, 7083–7087.[CrossRef]
    [Google Scholar]
  5. Boylan, S. A., Redfield, A. R., Brody, M. S. & Price, C. W. ( 1993; ). Stress-induced activation of the σ B transcription factor of Bacillus subtilis. J Bacteriol 175, 7931–7937.
    [Google Scholar]
  6. Burgess, R. R., Travers, A. A., Dunn, J. J. & Bautz, E. K. ( 1969; ). Factor stimulating transcription by RNA polymerase. Nature 221, 43–46.[CrossRef]
    [Google Scholar]
  7. Cheville, A. M., Arnold, K. W., Buchrieser, C., Cheng, C. M. & Kaspar, C. W. ( 1996; ). rpoS regulation of acid, heat, and salt tolerance in Escherichia coli O157 : H7. Appl Environ Microbiol 62, 1822–1824.
    [Google Scholar]
  8. Chowdhury, R., Sahu, G. K. & Das, J. ( 1996; ). Stress response in pathogenic bacteria. J Biosci 21, 149–160.[CrossRef]
    [Google Scholar]
  9. Cole, M. B., Jones, M. V. & Holyoak, C. ( 1990; ). The effect of pH, salt concentration and temperature on the survival and growth of Listeria monocytogenes. J Appl Bacteriol 69, 63–72.[CrossRef]
    [Google Scholar]
  10. Dashkevicz, M. P. & Feighner, S. D. ( 1989; ). Development of a differential medium for bile salt hydrolase-active Lactobacillus spp. Appl Environ Microbiol 55, 11–16.
    [Google Scholar]
  11. Davenport, H. W. ( 1982; ). Physiology of the Digestive Tract: an Introductory Text, 5th edn. Chicago: Year Book Medical Publishers.
  12. Deora, R., Tseng, T. & Misra, T. K. ( 1997; ). Alternative transcription factor σ SB of Staphylococcus aureus: characterization and role in transcription of the global regulatory locus sar. J Bacteriol 179, 6355–6359.
    [Google Scholar]
  13. Dussurget, O., Cabanes, D., Dehoux, P., Lecuit, M., Buchrieser, C., Glaser, P. & Cossart, P.; European Listeria Genome Consortium ( 2002; ). Listeria monocytogenes bile salt hydrolase is a PrfA-regulated virulence factor involved in the intestinal and hepatic phases of listeriosis. Mol Microbiol 45, 1095–1106.[CrossRef]
    [Google Scholar]
  14. Fang, F. C., Libby, S. J., Buchmeier, N. A., Loewen, P. C., Switala, J., Harwood, J. & Guiney, D. G. ( 1992; ). The alternative sigma factor KatF (RpoS) regulates Salmonella virulence. Proc Natl Acad Sci U S A 89, 11978–11982.[CrossRef]
    [Google Scholar]
  15. Farber, J. M. & Peterkin, P. I. ( 1991; ). Listeria monocytogenes, a food-borne pathogen. Microbiol Rev 55, 476–511.
    [Google Scholar]
  16. Ferreira, A., O'Byrne, C. P. & Boor, K. J. ( 2001; ). Role of σ B in heat, ethanol, acid, and oxidative stress resistance and during carbon starvation in Listeria monocytogenes. Appl Environ Microbiol 67, 4454–4457.[CrossRef]
    [Google Scholar]
  17. Ferreira, A., Sue, D., O'Byrne, C. P. & Boor, K. J. ( 2003; ). Role of Listeria monocytogenes σ B in survival of lethal acidic conditions and in the acquired acid tolerance response. Appl Environ Microbiol 69, 2692–2698.[CrossRef]
    [Google Scholar]
  18. Fraser, K. R. & O'Byrne, C. P. ( 2002; ). Osmoprotection by carnitine in a Listeria monocytogenes mutant lacking the OpuC transporter: evidence for a low affinity carnitine uptake system. FEMS Microbiol Lett 211, 189–194.[CrossRef]
    [Google Scholar]
  19. Fraser, K. R., Harvie, D., Coote, P. J. & O'Byrne, C. P. ( 2000; ). Identification and characterization of an ATP binding cassette l-carnitine transporter in Listeria monocytogenes. Appl Environ Microbiol 66, 4696–4704.[CrossRef]
    [Google Scholar]
  20. Fraser, K. R., Sue, D., Wiedmann, M. & Boor, K. J. ( 2003; ). Role of σ B in regulating the compatible solute uptake systems of Listeria monocytogenes: osmotic induction of opuC is σ B-dependent. Appl Environ Microbiol 69, 2015–2022.[CrossRef]
    [Google Scholar]
  21. Glaser, P., Frangeul, L., Buchrieser, C. & 52 other authors ( 2001; ). Comparative genomics of Listeria species. Science 294, 849–852.
    [Google Scholar]
  22. Harwood, C. R. & Cutting, S. M. ( 1990; ). Molecular Biological Methods for Bacillus. Chichester, New York: Wiley.
  23. Helmann, J. D. & Chamberlin, M. J. ( 1988; ). Structure and function of bacterial sigma factors. Annu Rev Biochem 57, 839–872.[CrossRef]
    [Google Scholar]
  24. Helmann, J. D., Wu, M. F., Kobel, P. A., Gamo, F. J., Wilson, M., Morshedi, M. M., Navre, M. & Paddon, C. ( 2001; ). Global transcriptional response of Bacillus subtilis to heat shock. J Bacteriol 183, 7318–7328.[CrossRef]
    [Google Scholar]
  25. Humphreys, S., Stevenson, A., Bacon, A., Weinhardt, A. B. & Roberts, M. ( 1999; ). The alternative sigma factor, σ E, is critically important for the virulence of Salmonella Typhimurium. Infect Immun 67, 1560–1568.
    [Google Scholar]
  26. Kappes, R. M., Kempf, B., Kneip, S., Boch, J., Gade, J., Meier-Wagner, J. & Bremer, E. ( 1999; ). Two evolutionary closely related ABC transporters mediate the uptake of choline for synthesis of the osmoprotectant glycine betaine in Bacillus subtilis. Mol Microbiol 32, 203–216.[CrossRef]
    [Google Scholar]
  27. Kazmierczak, M., Mithoe, S., Boor, K. J. & Wiedmann, M. ( 2003; ). Listeria monocytogenes σ B regulates stress response and virulence functions. J Bacteriol (in press).
    [Google Scholar]
  28. Ko, R. & Smith, L. T. ( 1999; ). Identification of an ATP-driven, osmoregulated glycine betaine transport system in Listeria monocytogenes. Appl Environ Microbiol 65, 4040–4048.
    [Google Scholar]
  29. Kolter, R., Siegele, D. A. & Tormo, A. ( 1993; ). The stationary phase of the bacterial life cycle. Annu Rev Microbiol 47, 855–874.[CrossRef]
    [Google Scholar]
  30. Kullik, I., Giachino, P. & Fuchs, T. ( 1998; ). Deletion of the alternative sigma factor σ B in Staphylococcus aureus reveals its function as a global regulator of virulence genes. J Bacteriol 180, 4814–4820.
    [Google Scholar]
  31. Lou, Y. & Yousef, A. E. ( 1999; ). Characteristics of Listeria monocytogenes important to food processors. In Listeria, Listeriosis and Food Safety, pp. 131–224. Edited by E. T. Ryser & E. H. Marth. New York: Marcel Dekker.
  32. McCann, M. P., Kidwell, J. P. & Matin, A. ( 1991; ). The putative sigma factor KatF has a central role in development of starvation-mediated general resistance in Escherichia coli. J Bacteriol 173, 4188–4194.
    [Google Scholar]
  33. Mead, P. S., Slutsker, L., Dietz, V., McCaig, L. F., Bresee, J. S., Shapiro, C., Griffin, P. M. & Tauxe, R. V. ( 1999; ). Food-related illness and death in the United States. Emerg Infect Dis 5, 607–625.[CrossRef]
    [Google Scholar]
  34. Milohanic, E., Glaser, P., Coppee, J. Y., Frangeul, L., Vega, Y., Vazquez-Boland, J. A., Kunst, F., Cossart, P. & Buchrieser, C. ( 2003; ). Transcriptome analysis of Listeria monocytogenes identifies three groups of genes differently regulated by PrfA. Mol Microbiol 47, 1613–1625.[CrossRef]
    [Google Scholar]
  35. Nadon, C. A., Bowen, B. M., Wiedmann, M. & Boor, K. J. ( 2002; ). σ B contributes to PrfA-mediated virulence in Listeria monocytogenes. Infect Immun 70, 3948–3952.[CrossRef]
    [Google Scholar]
  36. Petersohn, A., Brigulla, M., Haas, S., Hoheisel, J. D., Volker, U. & Hecker, M. ( 2001; ). Global analysis of the general stress response of Bacillus subtilis. J Bacteriol 183, 5617–5631.[CrossRef]
    [Google Scholar]
  37. Portnoy, D. A., Jacks, P. S. & Hinrichs, D. J. ( 1988; ). Role of hemolysin for the intracellular growth of Listeria monocytogenes. J Exp Med 167, 1459–1471.[CrossRef]
    [Google Scholar]
  38. Price, C. W., Fawcett, P., Cérémonie, H., Su, N., Murphy, C. K. & Youngman, P. ( 2001; ). Genome-wide analysis of the general stress response in Bacillus subtilis. Mol Microbiol 41, 757–774.
    [Google Scholar]
  39. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  40. Sleator, R. D., Gahan, C. G., Abee, T. & Hill, C. ( 1999; ). Identification and disruption of BetL, a secondary glycine betaine transport system linked to the salt tolerance of Listeria monocytogenes LO28. Appl Environ Microbiol 65, 2078–2083.
    [Google Scholar]
  41. Sleator, R. D., Gahan, C. G. M., O'Driscoll, B. & Hill, C. ( 2000; ). Analysis of the role of betL in contributing to the growth and survival of Listeria monocytogenes LO28. Int J Food Microbiol 60, 261–268.[CrossRef]
    [Google Scholar]
  42. Sleator, R. D., Wouters, J., Gahan, C. G., Abee, T. & Hill, C. ( 2001; ). Analysis of the role of OpuC, an osmolyte transport system, in salt tolerance and virulence potential of Listeria monocytogenes. Appl Environ Microbiol 67, 2692–2698.[CrossRef]
    [Google Scholar]
  43. Sleator, R. D., Gahan, C. G. M. & Hill, C. ( 2003; ). A postgenomic appraisal of osmotolerance in Listeria monocytogenes. Appl Environ Microbiol 69, 1–9.[CrossRef]
    [Google Scholar]
  44. Small, P., Blankenhorn, D., Welty, D., Zinser, E. & Slonczewski, J. L. ( 1994; ). Acid and base resistance in Escherichia coli and Shigella flexneri: role of rpoS and growth pH. J Bacteriol 176, 1729–1737.
    [Google Scholar]
  45. Varon, D., Brody, M. S. & Price, C. W. ( 1996; ). Bacillus subtilis operon under the dual control of the general stress transcription factor σ B and the sporulation transcription factor σ H. Mol Microbiol 20, 339–350.[CrossRef]
    [Google Scholar]
  46. von Blohn, C., Kempf, B., Kappes, R. M. & Bremer, E. ( 1997; ). Osmostress response in Bacillus subtilis: characterization of a proline uptake system (OpuE) regulated by high osmolarity and the alternative transcription factor σ B. Mol Microbiol 25, 175–187.[CrossRef]
    [Google Scholar]
  47. Wemekamp-Kamphuis, H. H., Wouters, J. A., Sleator, R. D., Gahan, C. G., Hill, C. & Abee, T. ( 2002; ). Multiple deletions of the osmolyte transporters BetL, Gbu, and OpuC of Listeria monocytogenes affect virulence and growth at high osmolarity. Appl Environ Microbiol 68, 4710–4716.[CrossRef]
    [Google Scholar]
  48. Wiedmann, M., Arvik, T. J., Hurley, R. J. & Boor, K. J. ( 1998; ). General stress transcription factor σ B and its role in acid tolerance and virulence of Listeria monocytogenes. J Bacteriol 180, 3650–3656.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26526-0
Loading
/content/journal/micro/10.1099/mic.0.26526-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error