1887

Abstract

The cAMP-dependent pathway, which regulates yeast-to-hypha morphogenesis in , is controlled by changes in cAMP levels determined by the processes of synthesis and hydrolysis. Both low- and high-affinity cAMP phosphodiesterases are encoded in the genome. , encoding the high-affinity cAMP phosphodiesterase, has been cloned and shown to be toxic in upon overexpression under p, but functional under the moderate p. Deletion of causes elevated cAMP levels and responsiveness to exogenous cAMP, higher sensitivity to heat shock, severe growth defects at 42 °C and highly reduced levels of transcription. in hypha-inducing liquid medium , deletion prohibits normal hyphal, but not pseudohyphal growth. On solid medium mutants form aberrant hyphae, with fewer branches and almost no lateral buds, which are deficient in hypha-to-yeast reversion. The phenotypic defects of mutants show that the cAMP-dependent pathway plays specific roles in hyphal and pseudohyphal development, its regulatory role however, being greater in liquid than on solid medium . The increased expression of after serum addition correlates well with a drop in cAMP levels following the initial rise in response to the hyphal inducer. These results suggest that Capde2p mediates a desensitization mechanism by lowering basal cAMP levels in response to environmental stimuli in . .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26517-0
2003-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/10/mic1492961.html?itemId=/content/journal/micro/10.1099/mic.0.26517-0&mimeType=html&fmt=ahah

References

  1. Adams A., Gottschling D. E., Kaiser C. A., Stearns T. 1997 Methods in Yeast Genetics , a Cold Spring Harbor Laboratory Course Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  2. Bahn Y. S., Sundstrom P. 2001; CAP1 , and adenylate cyclase-associated protein gene, regulates bud–hypha transitions, filamentous growth, and cyclic AMP levels and is required for virulence of Candida albicans . J Bacteriol 183:3211–3223
    [Google Scholar]
  3. Bockmühl D. P., Ernst J. F. 2001; A potential phosphorylation site for an A-type kinase in the Efg1 regulator contributes to hyphal morphogenesis of Candida albicans . Genetics 157:1523–1530
    [Google Scholar]
  4. Bockmühl D. P., Krishnamurthy S. K., Gerads M., Sonneborn A., Ernst J. 2001; Distinct and redundant roles of the two protein kinase A isoforms Tpk1 and Tpk2 in morphogenesis and growth of Candida albicans. Mol Microbiol 42:1243–1257
    [Google Scholar]
  5. Borges-Walmsley M. I., Walmsley A. 2000; cAMP signalling in pathogenic fungi: control of dimorphic switching and pathogenicity. Trends Microbiol 8:133–141
    [Google Scholar]
  6. Brown A. J., Gow N. A. 1999; Regulatory networks controlling Candida albicans morphogenesis. Trends Microbiol 7:333–338
    [Google Scholar]
  7. Brown D. H. Jr, Giusani A. D., Chen X., Kumamoto C. A. 1999; Filamentous growth of Candida albicans in response to physical environmental cues and its regulation by the unique CZF1 gene. Mol Microbiol 34:651–662
    [Google Scholar]
  8. Bullock W. O., Fernandez J. M., Short J. M. 1987; XL1-Blue – a high-efficiency plasmid transforming recA Escherichia coli strain with β -galactosidase selection. Biotechniques 5:376–378
    [Google Scholar]
  9. Charbonneau H., Beier N., Walsh K. A., Beavo J. A. 1986; Identification of a conserved domain among cyclic nucleotide phosphodiesterases from diverse species. Proc Natl Acad Sci U S A 83:9308–9312
    [Google Scholar]
  10. Chattaway F. W., Wheeler P. R., O'Reilly J. 1981; Involvement of adenosine 3′ : 5′-cyclic monophosphate in the germination of blastospores of Candida albicans. J Gen Microbiol 123:233–240
    [Google Scholar]
  11. Corbin J. D., Beebe S. J., Blackmore P. F. 1985; cAMP-dependent protein kinase activation lowers hepatocyte cAMP. J Biol Chem 260:8731–8735
    [Google Scholar]
  12. Csank C., Schröppel K., Leberer E., Harcus D., Mohamed O., Meloche S., Thomas D. Y., Whiteway M. 1998; Roles of the Candida albicans mitogen-activated protein kinase homolog, Cek1p, in hyphal development and systemic candidiasis. Infect Immun 66:2713–2721
    [Google Scholar]
  13. Daniel J. 1996; Measuring the toxic effects of high gene dosage on yeast cells. Mol Gen Genet 253:393–396
    [Google Scholar]
  14. Davis D., Wilson R. B., Mitchel A. P. 2000; RIM101-dependent and -independent pathways govern pH responses in Candida albicans . Mol Cell Biol 20:971–978
    [Google Scholar]
  15. Delbrück S., Ernst J. F. 1993; Morphogenesis-independent regulation of actin transcript levels in the pathogenic yeast Candida albicans . Mol Microbiol 10:859–866
    [Google Scholar]
  16. Egidy G., Paveto C., Passeron S., Galvagno M. A. 1989; Relationship between cyclic adenosine 3′ : 5′-monophosphate and germination in Candida albicans . Exp Mycol 13:428–432
    [Google Scholar]
  17. Egidy G., Paveto C., Passeron S., Galvagno M. A. 1990; cAMP levels and in situ measurement of cAMP related enzymes during yeast-to-hyphae transition in Candida albicans . Cell Biol Int Rep 14:59–68
    [Google Scholar]
  18. Ernst J. F. 2000; Transcription factors in Candida albicans – environmental control of morphogenesis. Microbiology 146:1763–1774
    [Google Scholar]
  19. Fedor-Chaiken M., Deschenes R. J., Broach J. R. 1990; SRV2 , a gene required for RAS activation of adenylate cyclase in yeast. Cell 61:329–340
    [Google Scholar]
  20. Feng Q., Summers E., Guo B., Fink G. 1999; Ras signaling is required for serum-induced hyphal differentiation in Candida albicans . J Bacteriol 181:6339–6346
    [Google Scholar]
  21. Field J., Vojtek A., Ballester R. 12 other authors 1990; Cloning and characterisation of CAP , the S . cerevisiae gene encoding the 70 kD adenylyl cyclase-associated protein. Cell 61:319–327
    [Google Scholar]
  22. Fonzi W. A., Irwin M. Y. 1993; Isogenic strain construction and gene mapping in Candida albicans . Genetics 134:717–728
    [Google Scholar]
  23. Fradin C., Kretschmar M., Nichterlein T., Gaillardin C., d'Enfert C., Hube B. 2003; Stage-specific gene expression of Candida albicans in human blood. Mol Microbiol 47:1523–1543
    [Google Scholar]
  24. Gettys T. W., Blackmore P. F., Redmon J. B., Beebe S. T., Corbin J. D. 1987; Short-term feedback regulation of cAMP by accelerated degradation in rat tissues. J Biol Chem 262:333–339
    [Google Scholar]
  25. Gillum A. M., Tsay E. Y. H., Kirsch D. R. 1984; Isolation of the Candida albicans gene for orotidine-5′-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. Mol Gen Genet 198:179–182
    [Google Scholar]
  26. Heale S. M., Stateva L., Oliver S. G. 1994; Introduction of YACs into intact yeast cells by a procedure which shows low levels of recombinagenicity and co-transformation. Nucleic Acid Res 23:5011–5015
    [Google Scholar]
  27. Hill J., Ian K. A., Donald G., Griffiths D. E. 1991; DMSO-enhanced whole cell yeast transformation. Nucleic Acids Res 19:5791
    [Google Scholar]
  28. Hoyer L. L., Cieslinski L. B., McLaughlin M. M., Torphy T. J., Shatzman A. R., Livi G. P. 1994; A Candida albicans cyclic nucleotide phosphodiesterase: cloning and expression in Saccharomyces cerevisiae and biochemical characterisation of the recombinant enzyme. Microbiology 140:1533–1542
    [Google Scholar]
  29. Kataoka T., Broek D., Wigler M. 1985; DNA sequence and characterisation of the S. cerevisiae gene encoding adenylate cyclase. Cell 43:493–505
    [Google Scholar]
  30. Lee K. L., Buckley H. R., Campbell C. C. 1975; An amino acid liquid synthetic medium for the development of mycelial and yeast forms of Candida albicans . Sabouraudia 13:148–153
    [Google Scholar]
  31. Liu H., Köhler J., Fink G. R. 1994; Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog. Science 266:1723–1725
    [Google Scholar]
  32. Loten E. G. 1978; Stimulation of a low K m phosphodiesterase from liver by insulin and glucagons. J Biol Chem 253:746–757
    [Google Scholar]
  33. Ma P., Wera S., VanDijck P., Thevelein J. M. 1999; The PDE1 -encoded low-affinity phosphodiesterase in the yeast Saccharomyces cerevisiae has a specific function in controlling agonist-induced cAMP signalling. Mol Biol Cell 10:91–104
    [Google Scholar]
  34. Nakafuku M., Obara T., Kaibuchi K. 7 other authors 1988; Isolation of a second yeast Saccharomyces cerevisiae gene ( GPA2 ) coding for guanine nucleotide-binding regulatory protein: studies on its structure and possible functions. Proc Natl Acad Sci U S A 85:1374–1378
    [Google Scholar]
  35. Namy O., Duchateau-nguyen G., Rousset J. P. 2002; Translational readthrough of the PDE2 stop codon modulates cAMP levels in Saccharomyces cerevisiae . Mol Microbiol 43:641–652
    [Google Scholar]
  36. Niimi M., Niimi K., Tokunaga J., Nakayama H. 1980; Changes in cyclic nucleotide levels and dimorphic transition in Candida albicans . J Bacteriol 142:1010–1014
    [Google Scholar]
  37. Nikawa J., Sass P., Wigler M. 1987; Cloning and characterisation of the low-affinity cyclic AMP phosphodiesterase gene of Saccharomyces cerevisiae . Mol Cell Biol 7:3629–3636
    [Google Scholar]
  38. Pan X., Heitman J. 2002; Protein Kinase A operates a molecular switch that governs yeast pseudohyphal differentiation. Mol Cell Biol 22:3981–3993
    [Google Scholar]
  39. Rocha C. R. C., Schröppel K., Harcus D., Marcil A., Dignard D., Taylor B. N., Thomas D. Y., Whiteway M., Leberer E. 2001; Signaling through adenylyl cyclase is essential for hyphal growth and virulence in the pathogenic fungus Candida albicans . Mol Biol Cell 12:3631–3643
    [Google Scholar]
  40. Sabie F. T., Gadd G. M. 1992; Effect of nucleosides and the relationship between cellular adenosine 3′ : 5′-cyclic monophosphate (cyclic AMP) and germ tube formation in Candida albicans . Mycopathologia 119:147–156
    [Google Scholar]
  41. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  42. Sass P., Field J., Nikawa J., Toda T., Wigler M. 1986; Cloning and characterisation of the high-affinity cyclic AMP phosphodiesterase gene of Saccharomyces cerevisiae . Proc Natl Acad Sci U S A 83:9303–9307
    [Google Scholar]
  43. Schmitt M. E., Brown T. A., Trumpower B. L. 1990; A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae . Nucleic Acids Res 18:3091–3092
    [Google Scholar]
  44. Sherman F., Fink G. R., Hicks J. B. 1986 Methods in Yeast Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  45. Sikorski R. S., Hieter P. 1989; A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae . Genetics 122:19–27
    [Google Scholar]
  46. Sonneborn A., Bockmühl D. P., Gerads M., Kurpanek K., Sanglard D., Ernst J. 2000; Protein kinase A encoded by TPK2 regulates dimorphism of Candida albicans . Mol Microbiol 35:386–396
    [Google Scholar]
  47. Srikantha T., Tsai L. K., Daniels K., Soll D. 2000; EFG1 null mutants of Candida albicans switch but cannot express the complete phenotype of white-phase budding cells. J Bacteriol 182:1580–1591
    [Google Scholar]
  48. Stoldt V. R., Sonneborn A., Leuker C. E., Ernst J. 1997; Efg1p, an essential regulator of morphogenesis of the human pathogen Candida albicans , is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi. EMBO J 16:1982–1991
    [Google Scholar]
  49. Sudbery P. E. 2001; The germ tubes of Candida albicans hyphae and pseudohyphae show different patterns of septin ring localisation. Mol Microbiol 41:19–31
    [Google Scholar]
  50. Sullivan P. A., Yin C. Y., Mollow C., Templeton M. D. 1983; An analysis of the metabolism and cell wall composition of Candida albicans during germ-tube formation. Can J Microbiol 29:1514–1525
    [Google Scholar]
  51. Tait E., Simon M. C., King S., Brown A. J., Gow N. A. R., Shaw D. 1997; A Candida albicans genome project: cosmid contigs, physical mapping, and gene isolation. Fungal Genet Biol 21:308–314
    [Google Scholar]
  52. Taylor J. 1999 Searches for cyclic - AMP phosphodiesterase genes from Candida albicans PhD thesis UMIST;
    [Google Scholar]
  53. Thevelein J. M., deWinde J. H. 1999; Novel sensing mechanism and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae . Mol Microbiol 33:904–918
    [Google Scholar]
  54. Toda T., Uno I., Ishikawa T. 7 other authors 1985; In yeast, Ras proteins are controlling elements of adenylate cyclase. Cell 40:27–36
    [Google Scholar]
  55. Toda T., Cameron S., Sass P., Wigler M. 1987a; Three different genes in the yeast Saccharomyces cerevisiae encode the catalytic subunits of the cAMP-dependent protein kinase. Cell 50:277–287
    [Google Scholar]
  56. Toda T., Cameron S., Sass P., Zoller M., Scott J. D., McMullen B., Hurwitz M., Krebs E. G., Wigler M. 1987b; Cloning and characterisation of BCY1 , a locus encoding the regulatory subunit of the cAMP-dependent protein kinase in yeast. Mol Cell Biol 7:1371–1377
    [Google Scholar]
  57. Tomlin G. C., Hamilton G. E., Gardner D. C. J., Walmsley R. M., Stateva L. I., Oliver S. G. 2000; Suppression of sorbitol dependence in a strain bearing a mutation in the SRB1 / PSA1 / VIG9 gene encoding GDP-mannose pyrophosphorylase by PDE2 overexpression suggests a role for the Ras/cAMP signal-transduction pathway in the control of yeast cell-wall biogenesis. Microbiology 146:2133–2146
    [Google Scholar]
  58. Tripathi G., Wiltshire C., Macaskill S., Tournu H., Budge S., Brown A. 2002; Gcn4 co-ordinates morphogenetic and metabolic responses to amino acid starvation in Candida albicans . EMBO J 21:5448–5456
    [Google Scholar]
  59. Warit S., Walmsley R., Stateva L. 1998; Cloning and sequencing of the Candida albicans homologue of SRB1 / PSA1 / VIG9 , the essential gene encoding GDP-mannose pyrophosphorylase in Saccharomyces cerevisiae . Microbiology 144:2417–2426
    [Google Scholar]
  60. Warit S., Zhang N., Short A., Walmsley R., Oliver S., Stateva L. 2000; Glycosylation deficiency phenotypes resulting from depletion of GDP-mannose pyrophosphorylase in two yeast species. Mol Microbiol 36:1156–1166
    [Google Scholar]
  61. Wilson R. B., Renault G., Jacquet M., Tatchell K. 1993; The PDE2 gene of Saccharomyces cerevisiae is allelic to rca1 and encodes a phosphodiesterase, which protects the cell from extracellular cAMP. FEBS Lett 325:191–195
    [Google Scholar]
  62. Wilson R. B., Davis D., Enloe B. M., Mitchell A. P. 2000; A recyclable Candida albicans URA3 cassette for PCR product-directed gene disruptions. Yeast 16:65–70
    [Google Scholar]
  63. Winston F., Dollard C., Ricupero-Hovasse S. L. 1995; Construction of a set of convenient Saccharomyces cerevisiae strains that are isogenic to S288C. Yeast 11:53–55
    [Google Scholar]
  64. Yamada-Okabe T., Mio T., Ono N., Kashima Y., Matsui M., Arisawa M., Yamada-Okabe H. 1999; Roles of three histidine kinase genes in hyphal development and virulence of the pathogenic fungus Candida albicans . J Bacteriol 181:7243–7247
    [Google Scholar]
  65. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119
    [Google Scholar]
  66. Zhang N., Gardner D., Oliver S. G., Stateva L. 1999; Genetically controlled cell lysis in the yeast Saccharomyces cerevisiae . Biotechnol Bioeng 64:607–615
    [Google Scholar]
  67. Zinman B., Hollenberg C. H. 1974; Effect of insulin and lipolytic agents on rat adipocyte low Km cyclic adenosine 3′ : 5′-monophosphate phosphodiesterse. J Biol Chem 249:2182–2187
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26517-0
Loading
/content/journal/micro/10.1099/mic.0.26517-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error