1887

Abstract

The availability of an ever increasing number of complete genome sequences of diverse prokaryotic taxa has led to the introduction of novel approaches to infer phylogenetic relationships among bacteria. In the present study the sequences of the 16S rRNA gene and nine housekeeping genes were compared with the fraction of shared putative orthologous protein-encoding genes, conservation of gene order, dinucleotide relative abundance and codon usage among 11 genomes of species belonging to the lactic acid bacteria. In general there is a good correlation between the results obtained with various approaches, although it is clear that there is a stronger phylogenetic signal in some datasets than in others, and that different parameters have different taxonomic resolutions. It appears that trees based on different kinds of information derived from whole-genome sequencing projects do not provide much additional information about the phylogenetic relationships among bacterial taxa compared to more traditional alignment-based methods. Nevertheless, it is expected that the study of these novel forms of information will have its value in taxonomy, to determine which genes are shared, when genes or sets of genes were lost in evolutionary history, to detect the presence of horizontally transferred genes and/or confirm or enhance the phylogenetic signal derived from traditional methods. Although these conclusions are based on a relatively small dataset, they are largely in agreement with other studies and it is anticipated that similar trends will be observed when comparing other genomes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26515-0
2003-12-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/12/mic1493507.html?itemId=/content/journal/micro/10.1099/mic.0.26515-0&mimeType=html&fmt=ahah

References

  1. Ahmad S., Selvapandiyan A., Bhatnagar R. K. 2000; Phylogenetic analysis of gram-positive bacteria based on grpE , encoded by the dnaK operon. Int J Syst Evol Microbiol 50:1761–1766
    [Google Scholar]
  2. Ajdic D., McShan W. M., McLaughlin R. E. 16 other authors 2002; Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. Proc Natl Acad Sci U S A 99:14434–14439
    [Google Scholar]
  3. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402
    [Google Scholar]
  4. Andersson S. G. E., Sharp P. M. 1996; Codon usage in the Mycobacterium tuberculosis complex. Microbiology 142:915–925
    [Google Scholar]
  5. Bansal A. K., Meyer T. E. 2002; Evolutionary analysis by whole-genome comparisons. J Bacteriol 184:2260–2272
    [Google Scholar]
  6. Bentley R. W., Leigh J. A., Collins M. D. 1991; Intrageneric structure of Streptococcus based on comparative analysis of small-subunit rRNA sequences. Int J Syst Bacteriol 41:487–494
    [Google Scholar]
  7. Beres S. B., Sylva G. L., Barbian K. D. 13 other authors 2002; Genome sequence of a serotype M3 strain of group A Streptococcus : phage-encoded toxins, the high-virulence phenotype, and clone emergence. Proc Natl Acad Sci U S A 99:10078–10083
    [Google Scholar]
  8. Bolotin A., Wincker P., Mauger S., Jaillon O., Malarme K., Weissenbach J., Ehrlich S. D., Sorokin A. 2001; The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res 11:731–753
    [Google Scholar]
  9. Brocchieri L. 2001; Phylogenetic inferences from molecular sequences: review and critique. Theor Pop Biol 59:27–40
    [Google Scholar]
  10. Brown J. R., Douady C. J., Italia M. J., Marshall W. E., Stanhope M. J. 2001; Universal trees based on large combined protein sequence data sets. Nat Genet 28:281–285
    [Google Scholar]
  11. Dandekar T., Snel B., Huynen M., Bork P. 1998; Conservation of gene order: a fingerprint of proteins that physically interact. Trends Biochem Sci 23:324–328
    [Google Scholar]
  12. Daubin V., Gouy M., Perriere G. 2001; Bacterial molecular phylogeny using supertree approach. Genome Inform 12:155–164
    [Google Scholar]
  13. Diaz-Lazcoz Y., Aude J. C., Nitschke P., Chiapello H., Landes-Devauchelle C., Risler J. L. 1998; Evolution of genes, evolution of species: the case of aminoacyl-tRNA synthetases. Mol Biol Evol 15:1548–1561
    [Google Scholar]
  14. Eisen J. A. 1995; The RecA protein as a model molecule for molecular systematic studies of bacteria: comparison of trees of RecAs and 16S rRNAs from the same species. J Mol Evol 41:1105–1123
    [Google Scholar]
  15. Eisen J. A. 2000; Assessing evolutionary relationships among microbes from whole-genome analysis. Curr Opin Microbiol 3:475–480
    [Google Scholar]
  16. Enright M. C., Spratt B. G. 1999; Extensive variation in the ddl gene of penicillin-resistant Streptococcus pneumoniae results from a hitchhiking effect driven by the penicillin-binding protein 2b gene. Mol Biol Evol 16:1687–1695
    [Google Scholar]
  17. Felsenstein J. 1988; Phylogenies from molecular sequences: inference and reliability. Annu Rev Genet 22:521–565
    [Google Scholar]
  18. Felsenstein J. 1996; Inferring phylogenies from protein sequences by parsimony, distance, and likelihood methods. Methods Enzymol 266:418–427
    [Google Scholar]
  19. Feng D. F., Cho G., Doolittle R. F. 1997; Determining divergence times with a protein clock: update and reevaluation. Proc Natl Acad Sci U S A 94:13028–13033
    [Google Scholar]
  20. Ferretti J. J., McShan W. M., Ajdic D. 20 other authors 2001; Complete genome sequence of an M1 strain of Streptococcus pyogenes . Proc Natl Acad Sci U S A 98:4658–4663
    [Google Scholar]
  21. Fitz-Gibbon S., House C. H. 1999; Whole genome-based phylogenetic analysis of free-living microorganisms. Nucleic Acids Res 27:4218–4222
    [Google Scholar]
  22. Fleischmann R. D., Adams M. D., White O. 37 other authors 1995; Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512
    [Google Scholar]
  23. Forterre P., Philippe H. 1999; Where is the root of the universal tree of life?. Bioessays 21:871–879
    [Google Scholar]
  24. Garrity G. M., Holt J. G. 2001; The road map to the manual. In Bergey's Manual of Systematic Bacteriology Vol. 1, 2nd edn. pp 119–141 Edited by Boone D. R., Castenholz R. W. New York: Springer;
    [Google Scholar]
  25. Glaser P., Rusniok C., Buchrieser C. 9 other authors 2002; Genome sequence of Streptococcus agalactiae , a pathogen causing invasive neonatal disease. Mol Microbiol 45:1499–1513
    [Google Scholar]
  26. Gupta R. S. 1998; Protein phylogenies and signature sequences: a reappraisal of evolutionary relationships among Archaebacteria, Eubacteria and Eukaryotes. Microbiol Mol Biol Rev 62:1435–1491
    [Google Scholar]
  27. Gupta R. S., Griffiths E. 2002; Critical issues in bacterial phylogeny. Theor Popul Biol 61:423–434
    [Google Scholar]
  28. Hoskins J., Alborn W. E., Arnold J. 39 other authors 2001; Genome of the bacterium Streptococcus pneumoniae strain R6. J Bacteriol 183:5709–5717
    [Google Scholar]
  29. House C. H., Fitz-Gibbon S. T. 2002; Using homolog groups to create a whole-genomic tree of free-living organisms: an update. J Mol Evol 54:539–547
    [Google Scholar]
  30. Huang W. M. 1996; Bacterial diversity based on type II DNA topoisomerase genes. Annu Rev Genet 30:79–107
    [Google Scholar]
  31. Huynen M. A., Bork P. 1998; Measuring genome evolution. Proc Natl Acad Sci U S A 95:5849–5856
    [Google Scholar]
  32. Karlin S., Mrazek J., Campbell A. M. 1997; Compositional biases of bacterial genomes and evolutionary implications. J Bacteriol 179:3899–3913
    [Google Scholar]
  33. Karlin S., Campbell A. M., Mrazek J. 1998; Comparative DNA analysis across diverse genomes. Annu Rev Genet 32:185–225
    [Google Scholar]
  34. Kawamura Y., Hou X. G., Sultana E., Miura H., Ezaki T. 1995; Determination of 16S rRNA sequences of Streptococcus mitis and Streptococcus gordonii and phylogenetic relationships among members of the genus Streptococcus . Int J Syst Bacteriol 45:406–408
    [Google Scholar]
  35. Klaenhammer T., Altermann E., Arigoni F. 33 other authors 2002; Discovering lactic acid bacteria by genomics. Antonie Van Leeuwenhoek 82:29–58
    [Google Scholar]
  36. Kleerebezem M., Boekhorst J., van Kranenburg R. 17 other authors 2003; Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci U S A 100:1990–1995
    [Google Scholar]
  37. Kolsto A. B. 1997; Dynamic bacterial genome organization. Mol Microbiol 24:241–248
    [Google Scholar]
  38. Kunisawa T. 2001; Gene arrangements and phylogeny in the class Proteobacteria . J Theor Biol 213:9–19
    [Google Scholar]
  39. Lan R., Reeves P. R. 1996; Gene transfer is a major factor in bacterial evolution. Mol Biol Evol 13:47–55
    [Google Scholar]
  40. Lin J., Gerstein M. 2000; Whole-genome trees based on the occurrence of folds and orthologs: implications for comparing genomes on different levels. Genome Res 10:808–818
    [Google Scholar]
  41. Nölling J., Breton G., Omelchenko M. V. 16 other authors 2001; Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum . J Bacteriol 183:4823–4838
    [Google Scholar]
  42. Ochman H., Lawrence J. G., Groisman E. A. 2000; Lateral gene transfer and the nature of bacterial innovation. Nature 405:299–304
    [Google Scholar]
  43. Okstad O. A., Hegna I., Lindback T., Rishovd A. L., Kolsto A. B. 1999; Genome organization is not conserved between Bacillus cereus and Bacillus subtilis . Microbiology 145:621–631
    [Google Scholar]
  44. Pot B., Ludwig W., Kersters K., Schleifer K. H. 1994; Taxonomy of lactic acid bacteria. In Bacteriocins of the Lactic Acid Bacteria: Microbiology, Genetics and Applications Edited by Vuyst L. De, Vandamme E. J. London: Chapman & Hall;
    [Google Scholar]
  45. Poyart C., Quesne G., Coulon S., Berche P., Trieu-Cuot P. 1998; Identification of streptococci to species level by sequencing the gene encoding the manganese-dependent superoxide dismutase. J Clin Microbiol 36:41–47
    [Google Scholar]
  46. Rossello-Mora R., Amann R. 2001; The species concept for prokaryotes. FEMS Microbiol Rev 25:39–67
    [Google Scholar]
  47. Roux V., Rydkina E., Eremeeva M., Raoult D. 1997; Citrate synthase gene comparison, a new tool for phylogenetic analysis, and its application for the Rickettsiae . Int J Syst Bacteriol 47:252–261
    [Google Scholar]
  48. Rutherford K., Parkhill J., Crook J., Horsnell T., Rice P., Rajandream M. A., Barell B. G. 2000; Artemis: sequence visualisation and annotation. Bioinformatics 16:944–945
    [Google Scholar]
  49. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  50. Schell M. A., Karmirantzou M., Snel B. 9 other authors 2002; The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Proc Natl Acad Sci U S A 99:14422–14427
    [Google Scholar]
  51. Smoot J. C., Barbian K. D., Van Gompel J. J. 15 other authors 2002; Genome sequence and comparative microarray analysis of serotype M18 group A Streptococcus strains associated with acute rheumatic fever outbreaks. Proc Natl Acad Sci U S A 99:4668–4673
    [Google Scholar]
  52. Snel B., Bork P., Huynen M. A. 1999; Genome phylogeny based on gene content. Nat Genet 21:108–110
    [Google Scholar]
  53. Snel B., Bork P., Huynen M. A. 2002; Genomes in flux: the evolution of archeal and proteobacterial gene content. Genome Res 12:17–25
    [Google Scholar]
  54. Stackebrandt E., Frederiksen W., Garrity G. M. 10 other authors 2002; Report of the ad-hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047
    [Google Scholar]
  55. Suyama M., Bork P. 2001; Evolution of prokaryotic gene order: genome rearrangements in closely related species. Trends Genet 17:10–13
    [Google Scholar]
  56. Swofford D. L., Olsen G. J. 1990; Phylogeny reconstruction. In Molecular Systematics Edited by Hillis D. M., Moritz C. Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  57. Tamames J., Casari G., Ouzounis C., Valencia A. 1997; Conserved clusters of functionally related genes in two bacterial genomes. J Mol Evol 44:66–73
    [Google Scholar]
  58. Teichmann S. A., Mitchison G. 1999; Is there a phylogenetic signal in prokaryote proteins?. J Mol Evol 49:98–107
    [Google Scholar]
  59. Tekaia F., Lazcano A., Dujon B. 1999; The genomic tree as revealed from whole proteome comparisons. Genome Res 9:550–557
    [Google Scholar]
  60. Tekaia F., Yeramian E., Dujon B. 2002; Amino acid composition of genomes, lifestyles of organisms, and evolutionary trends: a global picture with correspondence analysis. Gene 297:51–60
    [Google Scholar]
  61. Tettelin H., Nelson K. E., Paulsen I. T. 36 other authors 2001; Complete genome sequence of a virulent isolate of Streptococcus pneumoniae . Science 293:498–506
    [Google Scholar]
  62. Tettelin H., Masignani V., Cieslewicz M. J. 40 other authors 2002; Complete genome sequence and comparative genomic analysis of an emerging human pathogen, serotype V Streptococcus agalactiae . Proc Natl Acad Sci U S A 99:12391–12396
    [Google Scholar]
  63. Vandamme P., Pot B., Gillis M., De Vos P., Kersters K., Swings J. 1996; Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 60:407–438
    [Google Scholar]
  64. Wheelis M. L., Kandler O., Woese C. R. 1992; On the nature of global classification. Proc Natl Acad Sci U S A 89:2930–2934
    [Google Scholar]
  65. Wolf Y. I., Rogozin I. B., Grishin N. V., Tatusov R. L., Koonin E. V. 2001; Genome trees constructed using five different approaches suggest new major bacterial clades. BMC Evol Biol 1:8
    [Google Scholar]
  66. Wolf Y. I., Rogozin I. B., Grishin N. V., Koonin E. V. 2002; Genome trees and the tree of life. Trends Genet 18:472–479
    [Google Scholar]
  67. Wright F. 1990; The ‘effective number of codons' used in a gene. Gene 87:23–29
    [Google Scholar]
  68. Zeigler D. R. 2003; Gene sequences useful for predicting relatedness of whole genomes in bacteria. Int J Syst Evol Microbiol 53:1893–1900
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26515-0
Loading
/content/journal/micro/10.1099/mic.0.26515-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error