1887

Abstract

The ALS gene family of consists of eight genes ( to and ) that encode cell-wall glycoproteins involved in adhesion to host surfaces. Considerable allelic sequence variability has been documented for regions of ALS genes encoding repeated sequences. Although regions of ALS genes encoding non-repeated sequences tend to be more conserved, some sequence divergence has been noted, particularly for alleles of . Data from the genome sequencing project provided the first indication that strain SC5314 encoded two divergent -like sequences and that three of the ALS genes (, and ) were contiguous on chromosome 6. Data from PCR analysis and construction of both single and double deletion mutants indicated that the divergent sequences were alleles of , and located downstream of and . Sequences within the 5′ domain of - and - varied by 11 %. Within the 3′ domain of each allele, extra nucleotides were present in two regions of -, designated Variable Block 1 (VB1) and Variable Block 2 (VB2). Analysis of strains from the five major genetic clades showed that both alleles are widespread among these strains, that the sequences of - and - are conserved among diverse strains and that recombinant alleles have been generated during evolution. Phylogenetic analysis showed that, although divergent in sequence, alleles are more similar to each other than to any other ALS genes. The degree of sequence divergence for greatly exceeds that observed previously for other ALS genes and may result in functional differences for the proteins encoded by the two alleles.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26495-0
2003-10-01
2020-07-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/10/mic1492947.html?itemId=/content/journal/micro/10.1099/mic.0.26495-0&mimeType=html&fmt=ahah

References

  1. Blignaut E., Pujol C., Lockhart S., Joly S., Soll D. R.. 2002; Ca3 fingerprinting of Candida albicans isolates from human immunodeficiency virus-positive and healthy individuals reveals a new clade in South Africa. J Clin Microbiol40:826–836
    [Google Scholar]
  2. Chen M. H., Shen Z. M., Bobin S., Kahn P. C., Lipke P. N.. 1995; Structure of Saccharomyces cerevisiae alpha-agglutinin. Evidence for a yeast cell wall protein with multiple immunoglobulin-like domains with atypical disulfides. J Biol Chem270:26168–26177
    [Google Scholar]
  3. Chu W. S., Magee B. B., Magee P. T.. 1993; Construction of an Sfi I macrorestriction map of the Candida albicans genome. J Bacteriol175:6637–6651
    [Google Scholar]
  4. Combet C., Blanchet C., Geourjon C., Deleage G.. 2000; [email protected]: network protein sequence analysis. Trends Biochem Sci25:147–150
    [Google Scholar]
  5. De Bernardis F., Sullivan P. A., Cassone A.. 2001; Aspartyl proteinases of Candida albicans and their role in pathogenicity. Med Mycol39:303–313
    [Google Scholar]
  6. Fonzi W. A., Irwin M. Y.. 1993; Isogenic strain construction and gene mapping in Candida albicans . Genetics134:717–728
    [Google Scholar]
  7. Fu Y., Ibrahim A. S., Sheppard D. C., Chen Y. C., French S. W., Cutler J. E., Filler S. G., Edwards J. E. Jr. 2002; Candida albicans Als1p: an adhesin that is a downstream effector of the EFG1 filamentation pathway. Mol Microbiol44:61–72
    [Google Scholar]
  8. Gaur N. K., Klotz S. A.. 1997; Expression, cloning, and characterization of a Candida albicans gene, ALA1 , that confers adherence properties upon Saccharomyces cerevisiae for extracellular matrix proteins. Infect Immun65:5289–5294
    [Google Scholar]
  9. Gaur N. K., Klotz S. A., Henderson R. L.. 1999; Overexpression of the Candida albicans ALA1 gene in Saccharomyces cerevisiae results in aggregation following attachment of yeast cells to extracellular matrix proteins, adherence properties similar to those of Candida albicans . Infect Immun67:6040–6047
    [Google Scholar]
  10. Gillum A. M., Tsay E. Y., Kirsch D. R.. 1984; Isolation of the Candida albicans genes for orotidine-5′-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. Mol Gen Genet198:179–182
    [Google Scholar]
  11. Hicks J. B., Herskowitz I.. 1976; Interconversion of yeast mating types. I. Direct observations of the action of the homothallism ( HO ) gene. Genetics83:245–258
    [Google Scholar]
  12. Hoyer L. L.. 2001; The ALS gene family of Candida albicans . Trends Microbiol9:176–180
    [Google Scholar]
  13. Hoyer L. L., Hecht J. E.. 2000; The ALS6 and ALS7 genes of Candida albicans . Yeast16:847–855
    [Google Scholar]
  14. Hoyer L. L., Hecht J. E.. 2001; The ALS5 gene of Candida albicans and analysis of the Als5p N-terminal domain. Yeast18:49–60
    [Google Scholar]
  15. Hoyer L. L., Scherer S., Shatzman A. R., Livi G. P.. 1995; Candida albicans ALS1: domains related to a Saccharomyces cerevisiae sexual agglutinin separated by a repeating motif. Mol Microbiol15:39–54
    [Google Scholar]
  16. Hoyer L. L., Payne T. L., Bell M., Myers A. M., Scherer S.. 1998a; Candida albicans ALS3 and insights into the nature of the ALS gene family. Curr Genet33:451–459
    [Google Scholar]
  17. Hoyer L. L., Payne T. L., Hecht J. E.. 1998b; Identification of Candida albicans ALS2 and ALS4 and localization of Als proteins to the fungal cell surface. J Bacteriol180:5334–5343
    [Google Scholar]
  18. Hoyer L. L., Fundyga R., Hecht J. E., Kapteyn J. C., Klis F. M., Arnold J.. 2001; Characterization of agglutinin-like sequence genes from non- albicans Candida and phylogenetic analysis of the ALS family. Genetics157:1555–1567
    [Google Scholar]
  19. Hube B., Naglik J.. 2001; Candida albicans proteinases: resolving the mystery of a gene family. Microbiology147:1997–2005
    [Google Scholar]
  20. Hube B., Stehr F., Bossenz M., Mazur A., Kretschmar M., Schafer W.. 2000; Secreted lipases of Candida albicans : cloning, characterisation and expression analysis of a new gene family with at least ten members. Arch Microbiol174:362–374
    [Google Scholar]
  21. Hull C. M., Johnson A. D.. 1999; Identification of a mating type-like locus in the asexual pathogenic yeast Candida albicans . Science285:1271–1275
    [Google Scholar]
  22. Jentoft N.. 1990; Why are proteins O -glycosylated?. Trends Biochem Sci15:291–294
    [Google Scholar]
  23. Kapteyn J. C., Hoyer L. L., Hecht J. E., Muller W. H., Andel A., Verkleij A. J., Makarow M., Van Den Ende H., Klis F. M.. 2000; The cell wall architecture of Candida albicans wild-type cells and cell wall-defective mutants. Mol Microbiol35:601–611
    [Google Scholar]
  24. Miyazaki Y., Geber A., Miyazaki H., Falconer D., Parkinson T., Hitchcock C., Grimberg B., Nyswaner K., Bennett J. E.. 1999; Cloning, sequencing, expression and allelic sequence diversity of ERG3 (C-5 sterol desaturase gene) in Candida albicans . Gene236:43–51
    [Google Scholar]
  25. Monod M., Borg-von Zepelin M.. 2002; Secreted proteinases and other virulence mechanisms of Candida albicans . Chem Immunol81:114–128
    [Google Scholar]
  26. Odds F. C.. 1988; Candida and Candidosis , 2nd edn. London: Baillière Tindall;
    [Google Scholar]
  27. Page R. D.. 1996; TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci12:357–358
    [Google Scholar]
  28. Pujol C., Pfaller M., Soll D. R.. 2002; Ca3 fingerprinting of Candida albicans bloodstream isolates from the United States, Canada, South America, and Europe reveals a European clade. J Clin Microbiol40:2729–2740
    [Google Scholar]
  29. Santos M. A., Tuite M. F.. 1995; The CUG codon is decoded in vivo as serine and not leucine in Candida albicans . Nucleic Acids Res23:1481–1486
    [Google Scholar]
  30. Staib P., Kretschmar M., Nichterlein T., Hof H., Morschhauser J.. 2002; Host versus in vitro signals and intrastrain allelic differences in the expression of a Candida albicans virulence gene. Mol Microbiol44:1351–1366
    [Google Scholar]
  31. Whelan W. L.. 1987; The genetic basis of resistance to 5-fluorocytosine in Candida species and Cryptococcus neoformans . Crit Rev Microbiol15:45–56
    [Google Scholar]
  32. Whelan W. L., Markie D., Kwon-Chung K. J.. 1986; Complementation analysis of resistance to 5-fluorocytosine in Candida albicans . Antimicrob Agents Chemother29:726–729
    [Google Scholar]
  33. Wickes B., Staudinger J., Magee B. B., Kwon-Chung K. J., Magee P. T., Scherer S.. 1991; Physical and genetic mapping of Candida albicans : several genes previously assigned to chromosome 1 map to chromosome R, the rDNA-containing linkage group. Infect Immun59:2480–2484
    [Google Scholar]
  34. Wilson R. B., Davis D., Enloe B. M., Mitchell A. P.. 2000; A recyclable Candida albicans URA3 cassette for PCR product-directed gene disruption. Yeast16:65–70
    [Google Scholar]
  35. Yesland K., Fonzi W. A.. 2000; Allele-specific gene targeting in Candida albicans results from heterology between alleles. Microbiology146:2097–2104
    [Google Scholar]
  36. Zhang N., Harrex A. L., Holland B., Cannon R. D., Schmid J.. 2002; Genomic markers of pathogenicity of Candida albicans .Abstract S-9. ASM Conference on Candida and Candidiasis, Tampa, FL, USA Washington, DC: American Society for Microbiology;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26495-0
Loading
/content/journal/micro/10.1099/mic.0.26495-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error