1887

Abstract

Prephenate dehydratase (PDT), chorismate mutase (CM) and 3-deoxy---7-heptulosonate 7-phosphate (DAHP) synthase are key regulatory enzymes in aromatic amino acid biosynthesis in the actinomycete . Deregulated, feedback-control-resistant mutants were isolated by incubation of on glucose mineral agar containing the toxic analogue -fluoro--phenylalanine (pFPhe). Several of these mutants had completely lost PDT sensitivity to Phe inhibition and Tyr activation. Mutant characterization yielded new information about PDT amino acid residues involved in Phe and Tyr effector binding sites. wild-type cells grown on glucose mineral medium normally possess a bifunctional CM/DAHP synthase protein complex (with DS1, a plant-type DAHP synthase). The CM activity of this protein complex is feedback-inhibited by Tyr and Phe, while DS1 activity is mainly inhibited by Trp. Isolation of pFPhe-resistant mutants yielded two feedback-inhibition-resistant CM mutants. These were characterized as regulatory mutants, derepressed in (a) synthesis of CM, now occurring as an abundant, feedback-inhibition-resistant, separate protein, and (b) synthesis of an alternative DAHP synthase (DS2, an -type DAHP synthase), only inhibited by Tyr and Trp. DS1 and DS2 thus are well integrated in primary metabolism: DS1 and CM form a protein complex, which stimulates CM activity and renders it sensitive to feedback inhibition by Phe and Tyr. Synthesis of CM and DS2 proteins appears to be controlled co-ordinately, sensitive to Phe-mediated feedback repression.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26494-0
2003-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/11/mic1493321.html?itemId=/content/journal/micro/10.1099/mic.0.26494-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410
    [Google Scholar]
  2. Alves A. M., Meijer W. G., Vrijbloed J. W., Dijkhuizen L. 1996; Characterization and phylogeny of the pfp gene of Amycolatopsis methanolica encoding PPi-dependent phosphofructokinase. J Bacteriol 178:149–155
    [Google Scholar]
  3. Arakawa K., Muller R., Mahmud T., Yu T. W., Floss H. G. 2002; Characterization of the early stage aminoshikimate pathway in the formation of 3-amino-5-hydroxybenzoic acid: the RifN protein specifically converts kanosamine into kanosamine 6-phosphate. J Am Chem Soc 124:10644–10645
    [Google Scholar]
  4. August P. R., Tang L., Yoon Y. J. 9 other authors 1998; Biosynthesis of the ansamycin antibiotic rifamycin: deductions from the molecular analysis of the rif biosynthetic gene cluster of Amycolatopsis mediterranei S699. Chem Biol 5:69–79
    [Google Scholar]
  5. Bentley R. 1990; The shikimate pathway. A metabolic tree with many branches. Crit Rev Biochem Mol Biol 25:307–384
    [Google Scholar]
  6. Bentley S. D., Chater K. F., Cerdeno-Tarraga A. M. 40 other authors 2002; Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2. Nature 417:141–147
    [Google Scholar]
  7. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
    [Google Scholar]
  8. Chen S., von Bamberg D., Hale V., Breuer M., Hardt B., Muller R., Floss H. G., Reynolds K. A., Leistner E. 1999; Biosynthesis of ansatrienin (mycotrienin) and naphthomycin. Identification and analysis of two separate biosynthetic gene clusters in Streptomyces collinus Tu 1892. Eur J Biochem 261:98–107
    [Google Scholar]
  9. de Boer L., Harder W., Dijkhuizen L. 1988; Phenylalanine and tyrosine metabolism in the facultative methylotroph Nocardia. sp– 239 Arch Microbiol 149:459–465
    [Google Scholar]
  10. de Boer L., Vrijbloed J. W., Grobben G., Dijkhuizen L. 1989; Regulation of aromatic amino acid biosynthesis in the ribulose monophosphate cycle methylotroph Nocardiasp. 239. Arch Microbiol 151:319–325
    [Google Scholar]
  11. de Boer L., Grobben G., Vrijbloed J. W., Dijkhuizen L. 1990; Biosynthesis of aromatic amino acids in Nocardia sp. 239: effects of amino acid analogues on growth and regulatory enzymes. Appl Microbiol Biotechnol 33:183–189
    [Google Scholar]
  12. Dopheide T. A., Crewther P., Davidson B. E. 1972; Chorismate mutase-prephenate dehydratase from Escherichia coli K-12. II. Kinetic properties. J Biol Chem 247:4447–4452
    [Google Scholar]
  13. Euverink G. J., Hessels G. I., Franke C., Dijkhuizen L. 1995a; Chorismate mutase and 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase of the methylotrophic actinomycete Amycolatopsis methanolica. Appl Environ Microbiol 61:3796–3803
    [Google Scholar]
  14. Euverink G. J., Wolters D. J., Dijkhuizen L. 1995b; Prephenate dehydratase of the actinomycete Amycolatopsis methanolica: purification and characterization of wild-type and deregulated mutant proteins. Biochem J 308:313–320
    [Google Scholar]
  15. Euverink G.-J. W., Vrijbloed J. W., Hessels G. I., Dijkhuizen L. 1996; Isolation and analysis of mutants of the methylotrophic actinomycete Amycolatopsis methanolica blocked in aromatic amino acid biosynthesis. FEMS Microbiol Lett 136:275–281
    [Google Scholar]
  16. Gosset G., Bonner C. A., Jensen R. A. 2001; Microbial origin of plant-type 2-keto-3-deoxy-d-arabino-heptulosonate 7-phosphate synthases, exemplified by the chorismate- and tryptophan-regulated enzyme from Xanthomonas campestris. J Bacteriol 183:4061–4070
    [Google Scholar]
  17. He J., Magarvey N., Piraee M., Vining L. C. 2001; The gene cluster for chloramphenicol biosynthesis in Streptomyces venezuelae ISP5230 includes novel shikimate pathway homologues and a monomodular non-ribosomal peptide synthetase gene. Microbiology 147:2817–2829
    [Google Scholar]
  18. Hodgson D. A. 2000; Primary metabolism and its control in streptomycetes: a most unusual group of bacteria. Adv Microb Physiol 42:47–238
    [Google Scholar]
  19. Ikeda H., Ishikawa J., Hanamoto A., Shinose M., Kikuchi H., Shiba T., Sakaki Y., Hattori M., Omura S. 2003; Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat Biotechnol 21:526–531
    [Google Scholar]
  20. Kim C.-G., Kirschning A., Bergon P., Ahn Y., Wang J. J., Shibuya M., Floss H. G. 1996a; Formation of 3-amino-5-hydroxybenzoic acid, the precursor of mC7N units in ansamycin antibiotics, by a new variant of the shikimate pathway. J Am Chem Soc 114:4941–4943
    [Google Scholar]
  21. Kim C. G., Kirschning A., Bergon P. 8 other authors 1996b; Biosynthesis of 3-amino-5-hydroxybenzoic acid, the precursor of mC(7)N units in ansamycin antibiotics. J Am Chem Soc 118:7486–7491
    [Google Scholar]
  22. Knaggs A. R. 1999; The biosynthesis of shikimate metabolites. Nat Prod Rep 16:525–560
    [Google Scholar]
  23. McCandliss R. J., Poling M. D., Herrmann K. M. 1978; 3-Deoxy-d-arabino-heptulosonate 7-phosphate synthase. Purification and molecular characterization of the phenylalanine-sensitive isoenzyme from Escherichia coli. J Biol Chem 253:4259–4265
    [Google Scholar]
  24. Murray V. 1989; Improved double-stranded DNA sequencing using the linear polymerase chain reaction. Nucleic Acids Res 17:8889
    [Google Scholar]
  25. Nelms J., Edwards R. M., Warwick J., Fotheringham I. 1992; Novel mutations in the pheA gene of Escherichia coli K-12 which result in highly feedback inhibition-resistant variants of chorismate mutase/prephenate dehydratase. Appl Environ Microbiol 58:2592–2598
    [Google Scholar]
  26. Patel N., Pierson D. L., Jensen R. A. 1977; Dual enzymatic routes to l-tyrosine and l-phenylalanine via pretyrosine in Pseudomonas aeruginosa. J Biol Chem 252:5839–5846
    [Google Scholar]
  27. Pierson L. S., Gaffney T., Lam S., Gong F. 1995; Molecular analysis of genes encoding phenazine biosynthesis in the biological control bacterium Pseudomonas aureofaciens 30-84. FEMS Microbiol Lett 134:299–307
    [Google Scholar]
  28. Pohnert G., Zhang S., Husain A., Wilson D. B., Ganem B. 1999; Regulation of phenylalanine biosynthesis. Studies on the mechanism of phenylalanine binding and feedback inhibition in the Escherichia coli P-protein. Biochemistry 38:12212–12217
    [Google Scholar]
  29. Ray J. M., Bauerle R. 1991; Purification and properties of tryptophan-sensitive 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase from Escherichia coli. J Bacteriol 173:1894–1901
    [Google Scholar]
  30. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  31. Schoner R., Herrmann K. M. 1976; 3-Deoxy-d-arabino-heptulosonate 7-phosphate synthase. Purification, properties, and kinetics of the tyrosine-sensitive isoenzyme from Escherichia coli. J Biol Chem 251:5440–5447
    [Google Scholar]
  32. Shultz J., Hermodson M. A., Garner C. C., Herrmann K. M. 1984; The nucleotide sequence of the aroF gene of Escherichia coli and the amino acid sequence of the encoded protein, the tyrosine- sensitive 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase. J Biol Chem 259:9655–9661
    [Google Scholar]
  33. Silakowski B., Kunze B., Muller R. 2000; Stigmatella aurantiaca Sg a15 carries genes encoding type I and type II 3-deoxy-d-arabino-heptulosonate-7-phosphate synthases: involvement of a type II synthase in aurachin biosynthesis. Arch Microbiol 173:403–411
    [Google Scholar]
  34. Sugimoto S., Shiio I. 1980; Purification and properties of bifunctional 3-deoxy-d-arabino-heptulosonate 7-phosphate synthetase-chorismate mutase component A from Brevibacterium flavum. J Biochem 87:881–890
    [Google Scholar]
  35. van Wageningen A. M., Kirkpatrick P. N., Williams D. H., Harris B. R., Kershaw J. K., Lennard N. J., Jones M., Jones S. J., Solenberg P. J. 1998; Sequencing and analysis of genes involved in the biosynthesis of a vancomycin group antibiotic. Chem Biol 5:155–162
    [Google Scholar]
  36. Vrijbloed J. W., van Hylckama Vlieg J., van der Put N. M., Hessels G. I., Dijkhuizen L. 1995; Molecular cloning with a pMEA300-derived shuttle vector and characterization of the Amycolatopsis methanolica prephenate dehydratase gene. J Bacteriol 177:6666–6669
    [Google Scholar]
  37. Walker G. E., Dunbar B., Hunter I. S., Nimmo H. G., Coggins J. R. 1996; Evidence for a novel class of microbial 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase in Streptomyces coelicolor A3(2), Streptomyces rimosus and Neurospora crassa. Microbiology 142:1973–1982
    [Google Scholar]
  38. Yu T. W., Muller R., Muller M., Zhang X., Draeger G., Kim C. G., Leistner E., Floss H. G. 2001; Mutational analysis and reconstituted expression of the biosynthetic genes involved in the formation of 3-amino-5-hydroxybenzoic acid, the starter unit of rifamycin biosynthesis in Amycolatopsis mediterranei S699. J Biol Chem 276:12546–12555
    [Google Scholar]
  39. Zhang S., Pohnert G., Kongsaeree P., Wilson D. B., Clardy J., Ganem B. 1998; Chorismate mutase-prephenate dehydratase from Escherichia coli. Study of catalytic and regulatory domains using genetically engineered proteins. J Biol Chem 273:6248–6253
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26494-0
Loading
/content/journal/micro/10.1099/mic.0.26494-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error