1887

Abstract

Certain mutations in the gene (encoding the ribosomal protein S12) activate or enhance antibiotic production in various bacteria. K88E and P91S mutants of A3(2), with an enhanced actinorhodin production, were found to exhibit an aberrant protein synthesis activity. While a high level of this activity (as determined by the incorporation of labelled leucine) was detected at the late stationary phase in the mutants, it decreased with age of the cells in the wild-type strain. In addition, the aberrant protein synthesis was particularly pronounced when cells were subjected to amino acid shift-down, and was independent of their ability to accumulate ppGpp. Ribosomes of K88E and P91S mutants displayed an increased accuracy in protein synthesis as demonstrated by the poly(U)-directed cell-free translation system, but so did K43N, K43T, K43R and K88R mutants, which were streptomycin resistant but showed no effect on actinorhodin production. This eliminates the possibility that the increased accuracy level is a cause of the antibiotic overproduction in the K88E and P91S mutants. The K88E and P91S mutant ribosomes exhibited an increased stability of the 70S complex under low concentrations of magnesium. The authors propose that the aberrant activation of protein synthesis caused by the increased stability of the ribosome is responsible for the remarkable enhancement of antibiotic production in the K88E and P91S mutants.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26490-0
2003-11-01
2019-11-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/11/mic1493299.html?itemId=/content/journal/micro/10.1099/mic.0.26490-0&mimeType=html&fmt=ahah

References

  1. Bentley, S. D., Chater, K. F., Cerdeno-Tarraga, A. M. & 40 other authors ( 2002; ). Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417, 141–147.[CrossRef]
    [Google Scholar]
  2. Bilgin, N., Claesens, F., Pahverk, H. & Ehrenberg, M. ( 1992; ). Kinetic properties of Escherichia coli ribosomes with altered forms of S12. J Mol Biol 224, 1011–1027.[CrossRef]
    [Google Scholar]
  3. Carter, A. P., Clemons, W. M., Brodersen, D. E., Morgan-Warren, R. J., Wimberly, B. T. & Ramakrishnan, V. ( 2000; ). Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature 407, 340–348.[CrossRef]
    [Google Scholar]
  4. Cashel, M., Gentry, D. R., Hernandez, V. J. & Vinella, D. ( 1996; ). The stringent response. In Escherichia coli and Salmonella, pp. 1458–1496. Edited by F. C. Neidhardt and others. Washington, DC: American Society for Microbiology.
  5. Chakraburtty, R. & Bibb, M. ( 1997; ). The ppGpp synthetase gene (relA) of Streptomyces coelicolor A3(2) plays a conditional role in antibiotic production and morphological differentiation. J Bacteriol 179, 5854–5861.
    [Google Scholar]
  6. Chakraburtty, R., White, J., Takano, E. & Bibb, M. ( 1996; ). Cloning, characterization and disruption of a (p)ppGpp synthetase gene (relA) of Streptomyces coelicolor A3(2). Mol Microbiol 19, 357–368.[CrossRef]
    [Google Scholar]
  7. Champness, W. C. & Chater, K. F. ( 1994; ). Regulation and integration of antibiotic production and morphological differentiation in Streptomyces spp. In Regulation of Bacterial Differentiation, pp. 61–93. Edited by P. Piggot, C. P. Moran & P. Youngman. Washington, DC: American Society for Microbiology.
  8. Chater, K. F. & Bibb, M. J. ( 1996; ). Regulation of bacterial antibiotic production. Bio/Technology 7, 57–105.
    [Google Scholar]
  9. Fernandez-Moreno, M. A., Caballero, J. L., Hopwood, D. A. & Malpartida, F. ( 1991; ). The act cluster contains regulatory and antibiotic export genes, direct targets for translational control by the bldA tRNA gene of Streptomyces. Cell 66, 769–780.[CrossRef]
    [Google Scholar]
  10. Godson, G. N. & Sinsheimer, R. L. ( 1967; ). Use of Brij lysis as a general method to prepare polyribosomes from Escherichia coli. Biochim Biophys Acta 149, 489–495.[CrossRef]
    [Google Scholar]
  11. Gregory, S. T., Cate, J. H. & Dahlberg, A. E. ( 2001; ). Streptomycin-resistant and streptomycin-dependent mutants of the extreme thermophile Thermus thermophilus. J Mol Biol 309, 333–338.[CrossRef]
    [Google Scholar]
  12. Hesketh, A. & Ochi, K. ( 1997; ). A novel method for improving Streptomyces coelicolor A3(2) for production of actinorhodin by introduction of rpsL (encoding ribosomal protein S12) mutations conferring resistance to streptomycin. J Antibiot 50, 532–535.[CrossRef]
    [Google Scholar]
  13. Hopwood, D. A., Chater, K. F. & Bibb, M. J. ( 1994; ). Antibiotic production in Streptomyces coelicolor A3(2). In Regulation and Biochemistry of Antibiotic Production, pp. 71–108. Edited by L. C. Vining & C. Stuttard. Newton, MA: Butterworth-Heinemann.
  14. Hosoya, Y., Okamoto, S., Muramatsu, H. & Ochi, K. ( 1998; ). Acquisition of certain streptomycin-resistant (str) mutations enhances antibiotic production in bacteria. Antimicrob Agents Chemother 42, 2041–2047.
    [Google Scholar]
  15. Hu, H. & Ochi, K. ( 2001; ). Novel approach for improving the productivity of antibiotic-producing strains by inducing combined resistant mutations. Appl Environ Microbiol 67, 1885–1892.[CrossRef]
    [Google Scholar]
  16. Hu, H., Zhang, Q. & Ochi, K. ( 2002; ). Activation of antibiotic biosynthesis by specified mutations in the rpoB gene (encoding the RNA polymerase β subunit) of Streptomyces lividans. J Bacteriol 184, 3984–3991.[CrossRef]
    [Google Scholar]
  17. Inaoka, T., Kasai, K. & Ochi, K. ( 2001; ). Construction of an in vivo nonsense readthrough assay system and functional analysis of ribosomal proteins S12, S4, and S5 in Bacillus subtilis. J Bacteriol 183, 4958–4963.[CrossRef]
    [Google Scholar]
  18. Jones, G. H. ( 1977; ). Relationship between changes in the translational apparatus and actinomycin production in Streptomyces antibioticus. J Bacteriol 129, 81–86.
    [Google Scholar]
  19. Karimi, R. & Ehrenberg, M. ( 1996; ). Dissociation rates of peptidyl-tRNA from the P-site of E. coli ribosomes. EMBO J 15, 1149–1154.
    [Google Scholar]
  20. Kieser, T., Bibb, M. J., Buttner, M. J., Chater, K. F. & Hopwood, D. A. ( 2000; ). Practical Streptomyces Genetics. Norwich: The John Innes Foundation.
  21. Kurland, C. G., Jorgensen, F., Richter, A., Ehrenberg, M., Bilgin, N. & Rojas, A. M. ( 1990; ). Through the accuracy window. In The Ribosome; Structure, Function & Evolution, pp. 513–526. Edited by W. E. Hill, A. E. Dahlberg, R. A. Garrett, P. B. Moore, D. Schlessinger & J. R. Warner. Washington, DC: American Society for Microbiology.
  22. Lai, C., Xu, J., Tozawa, Y., Okamoto-Hosoya, Y., Yao, X. & Ochi, K. ( 2002; ). Genetic and physiological characterization of rpoB mutations that activate antibiotic production in Streptomyces lividans. Microbiology 148, 3365–3373.
    [Google Scholar]
  23. Legault-Demare, L. & Chambliss, G. H. ( 1974; ). Natural messenger ribonucleic acid-directed cell-free protein-synthesizing system of Bacillus subtilis. J Bacteriol 120, 1300–1307.
    [Google Scholar]
  24. Martinez-Costa, O. H., Arias, P., Romero, N. M., Parro, V., Mellado, R. P. & Malpartida, F. ( 1996; ). A relA/spoT homologous gene from Streptomyces coelicolor A3(2) controls antibiotic biosynthetic genes. J Biol Chem 271, 10627–10634.[CrossRef]
    [Google Scholar]
  25. Noller, H. F., Moazed, D., Stern, S., Powers, T., Allen, P. N., Robertson, J. M., Weiser, B. & Triman, K. ( 1990; ). Structure of rRNA and its functional interactions in translation. In The Ribosome; Structure, Function & Evolution, pp. 73–92. Edited by W. E. Hill, A. E. Dahlberg, R. A. Garrett, P. B. Moore, D. Schlessinger & J. R. Warner. Washington, DC: American Society for Microbiology.
  26. O'Farrell, P. H. ( 1978; ). The suppression of defective translation by ppGpp and its role in the stringent response. Cell 14, 545–557.[CrossRef]
    [Google Scholar]
  27. Ochi, K. ( 1986; ). Occurrence of the stringent response in Streptomyces sp. and its significance for the initiation of morphological and physiological differentiation. J Gen Microbiol 132, 2621–2631.
    [Google Scholar]
  28. Ochi, K. ( 1987; ). Metabolic initiation of differentiation and secondary metabolism by Streptomyces griseus: significance of the stringent response (ppGpp) and GTP content in relation to A factor. J Bacteriol 169, 3608–3616.
    [Google Scholar]
  29. Ochi, K. ( 1990; ). A relaxed (rel) mutant of Streptomyces coelicolor A3(2) with a missing ribosomal protein lacks the ability to accumulate ppGpp, A-factor and prodigiosin. J Gen Microbiol 136, 2405–2412.[CrossRef]
    [Google Scholar]
  30. Ochi, K., Zhang, D., Kawamoto, S. & Hesketh, A. ( 1997; ). Molecular and functional analysis of the ribosomal L11 and S12 protein genes (rplK and rpsL) of Streptomyces coelicolor A3(2). Mol Gen Genet 256, 488–498.
    [Google Scholar]
  31. Ofverstedt, L. G., Zhang, K., Tapio, S., Skoglund, U. & Isaksson, L. A. ( 1994; ). Starvation in vivo for aminoacyl-tRNA increases the spatial separation between the two ribosomal subunits. Cell 79, 629–638.[CrossRef]
    [Google Scholar]
  32. Okamoto-Hosoya, Y., Sato, T. & Ochi, K. ( 2000; ). Resistance to paromomycin is conferred by rpsL mutations, accompanied by an enhanced antibiotic production in Streptomyces coelicolor A3(2). J Antibiot 53, 1424–1427.[CrossRef]
    [Google Scholar]
  33. Okamoto-Hosoya, Y., Okamoto, S. & Ochi, K. ( 2003; ). Development of antibiotic-overproducing strains by site-directed mutagenesis of the rpsL gene in Streptomyces lividans. Appl Environ Microbiol 69, 4256–4259.[CrossRef]
    [Google Scholar]
  34. Parker, J. ( 1989; ). Errors and alternatives in reading the universal genetic code. Microbiol Rev 53, 273–298.
    [Google Scholar]
  35. Schluenzen, F., Tocilj, A., Zarivach, R. & 8 other authors ( 2000; ). Structure of functionally activated small ribosomal subunit at 3·3 angstroms resolution. Cell 102, 615–623.[CrossRef]
    [Google Scholar]
  36. Sells, B. H. & Ennis, H. L. ( 1970; ). Polysome stability in relaxed and stringent strain of Escherichia coli during amino acid starvation. J Bacteriol 102, 666–671.
    [Google Scholar]
  37. Shima, J., Hesketh, A., Okamoto, S., Kawamoto, S. & Ochi, K. ( 1996; ). Induction of actinorhodin production by rpsL (encoding ribosomal protein S12) mutations that confer streptomycin resistance in Streptomyces lividans and Streptomyces coelicolor A3(2). J Bacteriol 178, 7276–7284.
    [Google Scholar]
  38. Sorensen, M. A. ( 2001; ). Charging levels of four tRNA species in Escherichia coli Rel(+) and Rel(−) strains during amino acid starvation: a simple model for the effect of ppGpp on translational accuracy. J Mol Biol 307, 785–798.[CrossRef]
    [Google Scholar]
  39. Sorensen, M. A., Jensen, K. F. & Pedersen, S. ( 1994; ). High concentrations of ppGpp decrease the RNA chain growth rate. Implications for protein synthesis and translational fidelity during amino acid starvation in Escherichia coli. J Mol Biol 236, 441–454.[CrossRef]
    [Google Scholar]
  40. Stark, H., Orlova, E. V., Rinke-Appel, J., Junke, N., Mueller, F., Rodnina, M., Wintermeyer, W., Brimacombe, R. & van Heel, M. ( 1997; ). Arrangement of tRNAs in pre- and posttranslocational ribosomes revealed by electron cryomicroscopy. Cell 88, 19–28.[CrossRef]
    [Google Scholar]
  41. Strauch, E., Takano, E., Baylis, H. A. & Bibb, M. J. ( 1991; ). The stringent response in Streptomyces coelicolor A3(2). Mol Microbiol 5, 289–298.[CrossRef]
    [Google Scholar]
  42. Takano, E., Gramajo, H. C., Strauch, E., Andres, N., White, J. & Bibb, M. J. ( 1992; ). Transcriptional regulation of the redD transcriptional activator gene accounts for growth-phase-dependent production of the antibiotic undecylprodigiosin in Streptomyces coelicolor A3(2). Mol Microbiol 6, 2797–2804.[CrossRef]
    [Google Scholar]
  43. Timms, A. R., Steingrimsdottir, H., Lehmann, A. R. & Bridges, B. A. ( 1992; ). Mutant sequences in the rpsL gene of Escherichia coli B/r: mechanistic implications for spontaneous and ultraviolet light mutagenesis. Mol Gen Genet 232, 89–96.[CrossRef]
    [Google Scholar]
  44. Toivonen, J. M., Boocock, M. R. & Jacobs, H. T. ( 1999; ). Modelling in Escherichia coli of mutations in mitoribosomal protein S12: novel mutant phenotypes of rpsL. Mol Microbiol 31, 1735–1746.[CrossRef]
    [Google Scholar]
  45. Vohradsky, J., Li, X. M., Dale, G., Folcher, M., Nguyen, L., Viollier, P. H. & Thompson, C. J. ( 2000; ). Developmental control of stress stimulons in Streptomyces coelicolor revealed by statistical analyses of global gene expression patterns. J Bacteriol 182, 4979–4986.[CrossRef]
    [Google Scholar]
  46. Wimberly, B. T., Brodersen, D. E., Clemons, W. M., Jr, Morgan-Warren, R. J., Carter, A. P., Vonrhein, C., Hartsch, T. & Ramakrishnan, V. ( 2000; ). Structure of the 30S ribosomal subunit. Nature 407, 327–339.[CrossRef]
    [Google Scholar]
  47. Xu, J., Tozawa, Y., Lai, C., Hayashi, H. & Ochi, K. ( 2002; ). A rifampicin resistance mutation in the rpoB gene confers ppGpp-independent antibiotic production in Streptomyces coelicolor A3(2). Mol Genet Genomics 268, 179–189.[CrossRef]
    [Google Scholar]
  48. Yusupov, M. M., Yusupova, G. Z., Baucom, A., Lieberman, K., Earnest, T. N., Cate, J. H. & Noller, H. F. ( 2001; ). Crystal structure of the ribosome at 5·5 Å resolution. Science 292, 883–896.[CrossRef]
    [Google Scholar]
  49. Zhang, K., Pettersson-Landen, L., Fredriksson, M. G., Ofverstedt, L. G., Skoglund, U. & Isaksson, L. A. ( 1998; ). Visualization of a large conformation change of ribosomes in Escherichia coli cells starved for tryptophan or treated with kirromycin. Exp Cell Res 238, 335–344.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26490-0
Loading
/content/journal/micro/10.1099/mic.0.26490-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error