1887

Abstract

is a component of the dental plaque biofilm and an important aetiological agent in dental caries. Although this organism growing in the suspended (planktonic) state has been well characterized, relatively little is known about its physiology in biofilms, particularly in the acidic environments associated with caries development. The authors determined the effect of biofilm age (1–5 days) and cell density on selected metabolic properties under conditions of glucose limitation in a biofilm-chemostat at pH 7·5 and compared these baseline values with those of 3 day biofilms subjected to acid stress. Biofilm cell biomass more than doubled over the 5 day experimental period under baseline conditions, with the glycolytic rate, glucose uptake, glucose-PTS (phosphotransferase system) activity and protein synthesis maximum at 1–2 days. DNA and RNA synthesis increased for the first 3 days before decreasing in the 5 day biofilms, while H/ATPase activity was higher in 5 day biofilms than 1 day biofilms, with overall activity 5–13-fold higher per cell unit than in the associated planktonic cells. Glucose pulsing (50 mM final concentration) for three consecutive days without pH control for 5 h (pH 4·39±0·02) resulted in a progressive decrease in planktonic cell numbers; however, the rate of acid formation and glucose utilization in the chemostat by these cells increased per cell unit. Assays for carbohydrate metabolism in the latter cells showed increased activity, as did an assay for H/ATPase (8-fold); however, DNA, RNA and protein synthesis were repressed (0·3–0·7-fold). Although the 3 day biofilm viable cell counts declined by 51 % on glucose pulsing, all the physiological parameters measured by cell unit increased in activity, with notable increases in RNA and protein synthesis (4·6–7·6-fold). The results indicate that the maintenance of intracellular pH homeostasis is the basis of the enhanced physiological status and acid tolerance of biofilm cells.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26482-0
2004-03-01
2019-08-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/3/mic1500735.html?itemId=/content/journal/micro/10.1099/mic.0.26482-0&mimeType=html&fmt=ahah

References

  1. Beckers, H. J. A. & van der Hoeven, J. S. ( 1982; ). Growth rates of Actinomyces viscosus and Streptococcus mutans during early colonization of tooth surfaces in gnotobiotic rats. Infect Immun 35, 583–587.
    [Google Scholar]
  2. Belli, W. A. & Marquis, R. E. ( 1994; ). Catabolite modification of acid tolerance of Streptococcus mutans GS5. Oral Microbiol Immunol 9, 29–34.[CrossRef]
    [Google Scholar]
  3. Bender, G. R., Sutton, S. C. & Marquis, R. E. ( 1986; ). Acid tolerance, proton permeabilities, and membrane ATPase of oral streptococci. Infect Immun 53, 331–338.
    [Google Scholar]
  4. Bowden, G. H. W. ( 1991; ). Which bacteria are cariogenic in humans? In Dental Caries Markers of High and Low Risk Groups and Individuals, vol. 1, pp. 266–286. Edited by N. M. Johnson. Cambridge: Cambridge University Press.
  5. Bowden, G. H. W. ( 1999; ). Controlled environment model for accumulation of biofilms of oral bacteria. Methods Enzymol 310, 216–224.
    [Google Scholar]
  6. Bradshaw, F. J., McKee, A. S. & Marsh, P. D. ( 1989; ). Effects of carbohydrate pulses and pH on populations shifts within oral microbial communities in vitro. J Dent Res 68, 1298–1302.[CrossRef]
    [Google Scholar]
  7. Brown, M. R. W. & Gilbert, P. ( 1993; ). Sensitivity of biofilms to antimicrobial agents. J Appl Bacteriol Suppl 74, 87–97.[CrossRef]
    [Google Scholar]
  8. Christensen, B. B., Sternberg, C., Andersen, J. B., Eberl, L., Møller, S., Givskov, M. & Molin, S. ( 1998; ). Establishment of new genetic traits in a microbial biofilm community. Appl Environ Microbiol 64, 2247–2255.
    [Google Scholar]
  9. Costerton, J. W., Cheng, K.-J., Geesey, G. G., Ladd, T. I., Nickel, J. D., Dagupta, M. & Marrie, T. J. ( 1987; ). Bacterial biofilms in nature and disease. Annu Rev Microbiol 41, 435–464.[CrossRef]
    [Google Scholar]
  10. Cvitkovitch, D. G., Boyd, D. A., Thevenot, T. & Hamilton, I. R. ( 1995; ). Glucose transport by a mutant of Streptococcus mutans unable to accumulate sugars via the phosphoenolpyruvate phosphotransferase system. J Bacteriol 177, 2251–2258.
    [Google Scholar]
  11. Dashper, S. G. & Reynolds, E. C. ( 1996; ). Lactic acid excretion by Streptococcus mutans. Microbiology 142, 33–39.[CrossRef]
    [Google Scholar]
  12. Davey, E. M. & O'Toole, G. ( 2000; ). Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64, 847–867.[CrossRef]
    [Google Scholar]
  13. Fletcher, M. ( 1991; ). The physiological activity of bacteria attached to solid surfaces. Adv Microb Physiol 32, 53–85.
    [Google Scholar]
  14. Goodman, A. E. & Marshall, K. C. ( 1995; ). Genetic responses of bacteria at surfaces. In Microbial Biofilms, pp. 80–98. Edited by J. W. Costerton & H. M. Lappin-Scott. Cambridge: Cambridge University Press.
  15. Hamilton, I. R. ( 1986; ). Growth, metabolism and acid production by Streptococcus mutans, In Molecular Microbiology and Immunobiology of Streptococcus mutans, pp. 145–155. Edited by S. Hamada, S. M. Michalek, H. Kiyono, L. Menaker & J. R. McGhee. Amsterdam: Elsevier Science Publishers.
  16. Hamilton, I. R. ( 2000; ). Ecological basis for dental caries. In Oral Bacterial Ecology. The Molecular Basis, pp. 219–274. Edited by H. K. Kuramitsu & R. P. Ellen. Wymondham: Horizon Scientific Press.
  17. Hamilton, I. R. & Bowden, G. H. ( 2000; ). Oral Microbiology. In Encyclopedia of Microbiology, vol. 3, pp. 466–481. Edited by J. Lederberg. San Diego: Academic Press.
  18. Hamilton, I. R. & Buckley, N. D. ( 1991; ). Adaptation by Streptococcus mutans to acid tolerance. Oral Microbiol Immunol 6, 65–71.[CrossRef]
    [Google Scholar]
  19. Hamilton, I. R., Gauthier, L., Desjardins, B. & Vadeboncoeur, C. ( 1989; ). Concentration-dependent repression of the soluble and membrane components of the Streptococcus mutans phosphoenolpyruvate : sugar phosphotransferase system by glucose. J Bacteriol 171, 2942–2948.
    [Google Scholar]
  20. Hilliard, J. J., Goldschmidt, R. M., Licata, L., Baum, E. Z. & Bush, K. ( 1999; ). Multiple mechanisms of action for inhibitors of histidine protein kinases from bacterial two-component systems. Antimicrob Agents Chemother 43, 1693–1699.
    [Google Scholar]
  21. Hoyle, B. D. & Costerton, J. W. ( 1991; ). Bacterial resistance to antibiotics: the role of biofilms. Prog Drug Res 37, 91–105.
    [Google Scholar]
  22. Kingsley, G. R. & Getchell, G. ( 1960; ). Direct ultra micro glucose oxidase method for the determination of glucose in biological fluids. Clinical Chemistry 6, 466–475.
    [Google Scholar]
  23. Li, Y.-H. & Bowden, G. H. ( 1994a; ). Characteristics of accumulation of oral gram-positive bacteria on mucin-conditioned glass surfaces in a model system. Oral Microbiol Immunol 9, 1–11.[CrossRef]
    [Google Scholar]
  24. Li, Y.-H. & Bowden, G. H. ( 1994b; ). The effect of environmental pH and fluoride from the substratum on the development of biofilms of selected oral bacteria. J Dent Res 73, 1615–1626.
    [Google Scholar]
  25. Li, Y.-H., Lau, P. C. Y., Lee, J. H., Ellen, R. P. & Cvitkovitch, D. G. ( 2001a; ). Natural genetic transformation of Streptococcus mutans growing in biofilms. J Bacteriol 183, 897–908.[CrossRef]
    [Google Scholar]
  26. Li, Y.-H., Hanna, M. H., Svensäter, G., Ellen, R. P. & Cvitkovitch, D. G. (2001b; ). Cell density modulates acid adaptation in Streptococcus mutans: implications for survival in biofilms. J Bacteriol 183, 6875–6884.[CrossRef]
    [Google Scholar]
  27. Loesche, W. J. ( 1986; ). Role of Streptococcus mutans in human dental decay. Microbiol Rev 50, 353–380.
    [Google Scholar]
  28. Loo, C. Y., Corliss, D. A. & Ganeshkumar, N. ( 2000; ). Streptococcus gordonii biofilm formation: identification of genes that code for biofilm phenotypes. J Bacteriol 182, 1374–1382.[CrossRef]
    [Google Scholar]
  29. McNeill, K. & Hamilton, I. R. ( 2003; ). Acid tolerance response of biofilm cells of Streptococcus mutans. FEMS Microbiol Lett 221, 25–30.[CrossRef]
    [Google Scholar]
  30. O'Toole, G. A. & Kolter, R. ( 1998; ). Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30, 295–304.[CrossRef]
    [Google Scholar]
  31. Prigent-Combaret, C., Vidal, O., Dorel, C. & Lejeune, P. ( 1999; ). Abiotic surface sensing and biofilm-dependent regulation of gene expression in Escherichia coli. J Bacteriol 181, 5993–6002.
    [Google Scholar]
  32. Sauer, K., Camper, A. K., Ehrlich, G. D., Costerton, J. W. & Davies, D. G. ( 2002; ). Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184, 1140–1154.[CrossRef]
    [Google Scholar]
  33. Stephan, R. M. ( 1944; ). Intra-oral hydrogen-ion concentration associated with dental caries activity. J Dent Res 23, 257–266.[CrossRef]
    [Google Scholar]
  34. Stewart, P. S. ( 2003; ). Diffusion in biofilms. J Bacteriol 185, 1485–1491.[CrossRef]
    [Google Scholar]
  35. Svensäter, G., Larsson, U.-B., Greif, E. C. G., Cvitkovitch, D. G. & Hamilton, I. R. ( 1997; ). Acid tolerance response and survival by oral bacteria. Oral Microbiol Immunol 12, 266–273.[CrossRef]
    [Google Scholar]
  36. Svensäter, G., Welin, J., Wilkins, J. C., Beighton, D. & Hamilton, I. R. ( 2001; ). Protein expression by planktonic and biofilm cells of Streptococcus mutans. FEMS Microbiol Lett 205, 139–146.[CrossRef]
    [Google Scholar]
  37. Watanabe, S. & Dawes, C. ( 1988; ). The effects of different foods and concentrations of citric acid on the flow rate of whole saliva in man. Arch Oral Biol 33, 1–5.[CrossRef]
    [Google Scholar]
  38. Welin, J., Wilkins, J. C., Beighton, D., Wrzesinski, K., Fey, S. J., Mose Larsen, P., Hamilton, I. R. & Svensäter, G. ( 2003; ). Effect of acid shock on protein expression by biofilm cells of Streptococcus mutans. FEMS Microbiol Lett 227, 287–293.[CrossRef]
    [Google Scholar]
  39. Wilkins, J. C., Homer, K. A. & Beighton, D. ( 2002; ). Analysis of Streptococcus mutans proteins modulated by culture under acidic conditions. Appl Environ Microbiol 68, 2382–2390.[CrossRef]
    [Google Scholar]
  40. Wimpenny, J., Manz, W. & Szewzyk, U. ( 2000; ). Heterogeneity in biofilms. FEMS Microbiol Rev 24, 661–671.[CrossRef]
    [Google Scholar]
  41. Yamada, T., Igarashi, K. & Mitsutomi, M. ( 1980; ). Evaluation of cariogenicity of glycosylsucrose by a new method of measuring pH under human dental plaque in situ. J Dent Res 59, 2157–2162.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26482-0
Loading
/content/journal/micro/10.1099/mic.0.26482-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error