1887

Abstract

assimilates ammonium by the concerted action of glutamine synthetase and glutamate synthase. The expression of the operon encoding the latter enzyme is impaired in mutant strains. CcpA is a pleiotropic transcriptional regulator that is the key factor in the regulation of carbon metabolism. However, in addition to their defect in catabolite repression mutants are unable to grow on minimal media with glucose and ammonium as the single sources of carbon and nitrogen, respectively. In this work, the expression of the operon was analysed and its role in growth on minimal sugar/ammonium media was studied. Expression of requires induction by glucose or other glycolytically catabolized carbon sources. In mutants, cannot be induced by glucose due to the low activity of the phosphotransferase sugar transport system in these mutants. A mutation that allowed phosphotransferase system activity in a background simultaneously restored glucose induction of and growth on glucose/ammonium medium. Moreover, artificial induction of the operon in the mutant allowed the mutant strain to grow on minimal medium with glucose and ammonium. It may be concluded that expression of the operon depends on the accumulation of glycolytic intermediates which cannot occur in the mutant. The lack of induction is the bottleneck that prevents growth of the mutant on glucose/ammonium media. The control of expression of the operon by CcpA provides a major regulatory link between carbon and amino acid metabolism.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26479-0
2003-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/10/mic1493001.html?itemId=/content/journal/micro/10.1099/mic.0.26479-0&mimeType=html&fmt=ahah

References

  1. Belitsky B. R. 2002; Biosynthesis of amino acids of the glutamate and aspartate families, alanine and polyamines. In Bacillus subtilis and its Closest Relatives: from Genes to Cells pp 203–231 Edited by Sonenshein A. L., Hoch J. A., Losick R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  2. Belitsky B. R., Sonenshein A. L. 1998; Role and regulation of Bacillus subtilis glutamate dehydrogenase genes. J Bacteriol 180:6298–6305
    [Google Scholar]
  3. Belitsky B. R., Sonenshein A. L. 1999; An enhancer element located downstream of the major glutamate dehydrogenase gene of Bacillus subtilis . Proc Natl Acad Sci U S A 96:10290–10295
    [Google Scholar]
  4. Belitsky B. R., Wray L. V. Jr, Fisher S. H., Bohannon D. E., Sonenshein A. L. 2000; Role of TnrA in nitrogen source-dependent repression of Bacillus subtilis glutamate synthase gene expression. J Bacteriol 182:5939–5947
    [Google Scholar]
  5. Blencke H.-M., Homuth G., Ludwig H., Mäder U., Hecker M., Stülke J. 2003; Transcriptional profiling of gene expression in response to glucose in Bacillus subtilis : regulation of the central metabolic pathways. Metab Eng 5:133–149
    [Google Scholar]
  6. Bohannon D. E., Sonenshein A. L. 1989; Positive regulation of glutamate biosynthesis in Bacillus subtilis . J Bacteriol 171:4718–4727
    [Google Scholar]
  7. Deutscher J., Küster E., Bergstedt U., Charrier V., Hillen W. 1995; Protein kinase-dependent HPr/CcpA interaction links glycolytic activity to carbon catabolite repression in Gram-positive bacteria. Mol Microbiol 15:1049–1053
    [Google Scholar]
  8. Deutscher J., Galinier A., Martin-Verstraete I. 2002; Carbohydrate uptake and metabolism. In Bacillus subtilis and its Closest Relatives: from Genes to Cells pp  129–150 Edited by Sonenshein A. L., Hoch J. A., Losick R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  9. Faires N., Tobisch S., Bachem S., Martin-Verstraete I., Hecker M., Stülke J. 1999; The catabolite control protein CcpA controls ammonium assimilation in Bacillus subtilis . J Mol Microbiol Biotechnol 1:141–148
    [Google Scholar]
  10. Fillinger S., Boschi-Muller S., Azza S., Dervyn E., Branlant G., Aymerich S. 2000; Two glyceraldehyde-3-phosphate dehydrogenases with opposite physiological roles in a nonphotosynthetic bacterium. J Biol Chem 275:14031–14037
    [Google Scholar]
  11. Fisher S. H., Débarbouillé M. 2002; Nitrogen source utilization and its regulation. In Bacillus subtilis and its Closest Relatives: from Genes to Cells pp  181–191 Edited by Sonenshein A. L., Hoch J. A., Losick R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  12. Galinier A., Haiech J., Kilhoffer M.-C., Jaquinod M., Stülke J., Deutscher J., Martin-Verstraete I. 1997; The Bacillus subtilis crh gene encodes a HPr-like protein involved in catabolite repression. Proc Natl Acad Sci U S A 94:8439–8444
    [Google Scholar]
  13. Henkin T. M. 1996; The role of the CcpA transcriptional regulator in carbon metabolism in Bacillus subtilis . FEMS Microbiol Lett 135:9–15
    [Google Scholar]
  14. Jourlin-Castelli C., Mani N., Nakano M. M., Sonenshein A. L. 2000; CcpC, a novel regulator of the LysR family required for glucose repression of the citB gene in Bacillus subtilis . J Mol Biol 295:865–878
    [Google Scholar]
  15. Krüger S., Stülke J., Hecker M. 1993; Catabolite repression of β -glucanase synthesis in Bacillus subtilis . J Gen Microbiol 139:2047–2054
    [Google Scholar]
  16. Kunst F., Rapoport G. 1995; Salt stress is an environmental signal affecting degradative enzyme synthesis in Bacillus subtilis . J Bacteriol 177:2403–2407
    [Google Scholar]
  17. Lindner C., Stülke J., Hecker M. 1994; Regulation of xylanolytic enzymes in Bacillus subtilis . Microbiology 140:753–757
    [Google Scholar]
  18. Ludwig H., Stülke J. 2001; The Bacillus subtilis catabolite control protein CcpA exerts all its regulatory functions by DNA-binding. FEMS Microbiol Lett 203:125–129
    [Google Scholar]
  19. Ludwig H., Homuth G., Schmalisch M., Dyka F. M., Hecker M., Stülke J. 2001; Transcription of glycolytic genes and operons in Bacillus subtilis : evidence for the presence of multiple levels of control of the gapA operon. Mol Microbiol 41:409–422
    [Google Scholar]
  20. Ludwig H., Meinken C., Matin A., Stülke J. 2002a; Insufficient expression of the ilv-leu operon encoding enzymes of branched-chain amino acid biosynthesis limits growth of a Bacillus subtilis ccpA mutant. J Bacteriol 184:5174–5178
    [Google Scholar]
  21. Ludwig H., Rebhan N., Blencke H.-M., Merzbacher M., Stülke J. 2002b; Control of the glycolytic gapA operon by the catabolite control protein A in Bacillus subtilis : a novel mechanism of CcpA-mediated regulation. Mol Microbiol 45:543–553
    [Google Scholar]
  22. Martin I., Débarbouillé M., Klier A., Rapoport G. 1989; Induction and metabolite regulation of levanase synthesis in Bacillus subtilis . J Bacteriol 171:1885–1892
    [Google Scholar]
  23. Miwa Y., Saikawa M., Fujita Y. 1994; Possible function and some properties of the CcpA protein of Bacillus subtilis . Microbiology 140:2567–2575
    [Google Scholar]
  24. Mogk A., Homuth G., Scholz C., Kim L., Schmid F. X., Schumann W. 1997; The GroE chaperonin machine is a major modulator of the CIRCE heat shock regulon of Bacillus subtilis . EMBO J 16:4579–4590
    [Google Scholar]
  25. Moreno M. S., Schneider B. L., Maile R. R., Weyler W., Saier M. H. Jr 2001; Catabolite repression mediated by CcpA protein in Bacillus subtilis : novel modes of regulation revealed by whole-genome analyses. Mol Microbiol 39:1366–1381
    [Google Scholar]
  26. Rosenkrantz M. S., Dingman D. W., Sonenshein A. L. 1985; Bacillus subtilis citB gene is regulated synergistically by glucose and glutamine. J Bacteriol 164:155–164
    [Google Scholar]
  27. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  28. Schell M. A. 1993; Molecular biology of the LysR family of transcriptional regulators. Annu Rev Microbiol 47:597–626
    [Google Scholar]
  29. Sonenshein A. L. 2002; The Krebs citric acid cycle. In Bacillus subtilis and its Closest Relatives: from Genes to Cells pp  151–162 Edited by Sonenshein A. L., Hoch J. A., Losick R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  30. Stülke J., Hillen W. 2000; Regulation of carbon catabolism in Bacillus species. Annu Rev Microbiol 54:849–880
    [Google Scholar]
  31. Tobisch S., Zühlke D., Bernhardt J., Stülke J., Hecker M. 1999; Role of CcpA in regulation of the central pathways of carbon catabolism in Bacillus subtilis . J Bacteriol 181:6996–7004
    [Google Scholar]
  32. Weinrauch Y., Msadek T., Kunst F., Dubnau D. 1991; Sequence and properties of comQ , a new competence regulatory gene of Bacillus subtilis . J Bacteriol 173:5685–5693
    [Google Scholar]
  33. Wray L. V. Jr, Pettengill F. K., Fisher S. H. 1994; Catabolite repression of the Bacillus subtilis hut operon requires a cis -acting site located downstream of the transcription initiation site. J Bacteriol 176:1894–1902
    [Google Scholar]
  34. Wray L. V. Jr, Zalieckas J. M., Fisher S. H. 2001; Bacillus subtilis glutamine synthetase controls gene expression through a protein-protein interaction with transcription actor TnrA. Cell 107:427–435
    [Google Scholar]
  35. Yoshida K.-I., Kobayashi K., Miwa Y. 9 other autors 2001; Combined transcriptome and proteome analysis as a powerful approach to study genes under glucose repression in Bacillus subtilis . Nucleic Acids Res 29:6683–6692
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26479-0
Loading
/content/journal/micro/10.1099/mic.0.26479-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error