1887

Abstract

Mid2p is a plasma membrane protein that functions in as a sensor of cell wall stress, activating the cell integrity pathway via the small GTPase Rho1p during exposure to mating pheromone, calcofluor white, and heat. To examine Mid2p signalling, a global synthetic interaction analysis of a mutant was performed; this identified 11 interacting genes. These include and , upstream elements in cell integrity pathway signalling, and and , required for 1,3--glucan synthesis. These synthetic interactions indicate that the Wsc1p sensor acts through Rom2p to activate the Fks1p glucan synthase in a Mid2p-independent way. To further explore Mid2p signalling a two-hybrid screen was done using the cytoplasmic tail of Mid2p; this identified (), encoding a 12 kDa peripheral membrane protein that localizes to the plasma membrane. Disruption of leads to resistance to calcofluor white and to a Mid2p-dependent constitutive phosphorylation of Mpk1p, supporting a role for Zeo1p in the cell integrity pathway. Consistent with this, -deficient cells suppress the growth defect of mutants in the Rho1p GDP–GTP exchange factor Rom2p, while exacerbating the growth defect of Δ mutants at 37 °C. In contrast, Δ mutants have opposing effects to Δ mutants, being synthetically lethal with Δ, and suppressing an 18 °C growth defect of Δ, while overexpression of rescues a Δ 37 °C growth defect. Thus, and appear to play reciprocal roles in the modulation of the yeast cell integrity pathway.

Keyword(s): HA, haemagglutinin
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26471-0
2003-09-01
2019-11-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/9/mic1492487.html?itemId=/content/journal/micro/10.1099/mic.0.26471-0&mimeType=html&fmt=ahah

References

  1. Baetz, K., Moffat, J., Haynes, J., Chang, M. & Andrews, B. ( 2001; ). Transcriptional coregulation of the cell integrity mitogen-activated protein kinase Slt2 and the cell cycle regulator Swi4. Mol Cell Biol 21, 6515–6528.[CrossRef]
    [Google Scholar]
  2. Brachmann, C. B., Davies, A., Cost, G. J., Caputo, E., Li, J., Hieter, P. & Boeke, J. D. ( 1998; ). Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14, 115–132.[CrossRef]
    [Google Scholar]
  3. Buehrer, B. M. & Errede, B. ( 1997; ). Coordination of the mating and cell integrity mitogen activated protein kinase pathways in Saccharomyces cerevisiae. Mol Cell Biol 17, 6517–6525.
    [Google Scholar]
  4. Bulawa, C. E., Slater, M., Cabib, E., Au-Young, J., Sburlati, A., Adair, W. L. & Robbins, P. ( 1986; ). The S. cerevisiae structural gene for chitin synthase is not required for chitin synthesis in vivo. Cell 46, 213–225.[CrossRef]
    [Google Scholar]
  5. Calmels, T., Parriche, M., Burand, H. & Tiraby, G. ( 1991; ). High efficiency transformation of Tolypocladium geodes conidiospores to phleomycin resistance. Curr Genet 20, 309–314.[CrossRef]
    [Google Scholar]
  6. Costigan, C., Gehrung, S. & Snyder, M. ( 1992; ). A synthetic lethal screen identifies SLK1, a novel protein kinase homologue implicated in yeast cell morphogenesis and cell growth. Mol Cell Biol 12, 1162–1178.
    [Google Scholar]
  7. Douglas, C. M., Foor, F., Marrinan, J. A. & 11 other authors ( 1994; ). The Saccharomyces cerevisiae FKS1(ETG1) gene encodes an integral membrane protein which is a subunit of 1,3-beta-d-glucan synthase. Proc Natl Acad Sci U S A 91, 12907–12911.[CrossRef]
    [Google Scholar]
  8. Drocourt, D., Calmels, T. P. G., Reynes, J. P., Baron, M. & Tiraby, G. ( 1990; ). Cassettes of the Streptoalloteichus hindustanus ble gene for transformation of lower and higher eukaryotes to phleomycin resistance. Nucleic Acids Res 18, 4009.[CrossRef]
    [Google Scholar]
  9. Elorza, M. V., Rico, H. & Sentandreu, R. ( 1983; ). Calcofluor white alters the assembly of chitin fibrils in Saccharomyces cerevisae. Antimicrob Agents Chemother 39, 200–207.
    [Google Scholar]
  10. Evangelista, M., Blundell, K., Longtine, M. S., Chow, C. J., Adames, N., Pringle, J. R., Peter, M. & Boone, C. ( 1997; ). Bni1p, a yeast formin linking Cdc42p and the actin cytoskeleton during polarized morphogenesis. Science 276, 118–122.[CrossRef]
    [Google Scholar]
  11. Garret-Engele, P., Moilanen, B. & Cyert, M. S. ( 1995; ). Calcineurin, the Ca2+/calmodulin-dependent protein phosphatase, is essential in yeast mutants with cell integity defects and in mutants that lack a functional H+-ATPase. Mol Cell Biol 15, 4103–4114.
    [Google Scholar]
  12. Gasch, A. P., Spellman, P. T., Kao, C. M., Carmel-Harel, O., Eisen, M. B., Storz, G., Botstein, D. & Brown, P. O. ( 2000; ). Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11, 4241–4257.[CrossRef]
    [Google Scholar]
  13. Gray, J. V., Ogas, J. P., Kamada, Y., Stone, M., Levin, D. E. & Herskowitz, I. ( 1997; ). A role for the Pkc1 MAP kinase pathway of Saccharomyces cerevisiae in bud emergence and identification of a putative upstream regulator. EMBO J 16, 4924–4937.[CrossRef]
    [Google Scholar]
  14. Huxley, C., Green, E. D. & Dunham, I. ( 1990; ). Rapid assessment of S. cerevisiae mating type by PCR. Trends Genet 6, 236.[CrossRef]
    [Google Scholar]
  15. Igual, J. C., Johnson, A. L. & Johnston, L. H. ( 1996; ). Coordinated regulation of gene expression by the cell cycle transcription factor SWI4 and the protein kinase C MAP kinase pathway for yeast cell integrity. EMBO J 15, 5001–5013.
    [Google Scholar]
  16. Irie, K., Takase, M., Lee, K. S., Levin, D. E., Araki, H., Matsumoto, K. & Oshima, Y. ( 1993; ). MKK1 and MKK2, which encode Saccharomyces cerevisiae mitogen activated protein kinase-kinase homologs, function in the pathway mediated by protein kinase C. Mol Cell Biol 13, 3076–3083.
    [Google Scholar]
  17. Jacoby, J. J., Nilius, S. M. & Heinisch, J. J. ( 1998; ). A screen for upstream components of the yeast protein kinase C signal transduction pathway identifies the product of the SLG1 gene. Mol Gen Genet 258, 148–155.[CrossRef]
    [Google Scholar]
  18. Jungmann, J., Rayner, J. C. & Munro, S. ( 1999; ). The Saccharomyces cerevisiae protein Mnn10p/Bed1p is a subunit of the Golgi mannosyltransferase complex. J Biol Chem 274, 6579–6585.[CrossRef]
    [Google Scholar]
  19. Kamada, Y., Qadota, H., Python, C. P., Anraku, Y., Ohya, Y. & Levin, D. E. ( 1996; ). Activation of yeast protein kinase C by Rho1 GTPase. J Biol Chem 271, 9193–9196.[CrossRef]
    [Google Scholar]
  20. Ketela, T., Green, R. & Bussey, H. ( 1999; ). Saccharomyces cerevisiae Mid2p is a potential cell wall stress sensor and upstream activator of the PKC1–MPK1 cell integrity pathway. J Bacteriol 181, 3330–3340.
    [Google Scholar]
  21. Kunkel, T. A., Roberts, J. D. & Zakour, R. A. ( 1987; ). Rapid and efficient site specific mutagenesis without phenotypic selection. Methods Enzymol 154, 367–382.
    [Google Scholar]
  22. Lee, K. S. & Levin, D. E. ( 1992; ). Dominant mutations in a gene encoding a putative protein kinase (BCK1) bypass the requirement for a Saccharomyces cerevisiae protein kinase C homologue. Mol Cell Biol 12, 172–182.
    [Google Scholar]
  23. Lee, K. S., Irie, K., Gotoh, Y., Watanabe, Y., Araki, H., Nishida, E., Matsumoto, K. & Levin, D. E. ( 1993; ). A yeast mitogen-activated protein kinase homolog (Mpk1p) mediates signalling by protein kinase C. Mol Cell Biol 13, 3067–3075.
    [Google Scholar]
  24. Levin, D. E. & Bartlett-Heubusch, E. ( 1992; ). Mutations in the S. cerevisiae PKC1 gene display a cell cycle-specific osmotic stability defect. J Cell Biol 116, 1221–1229.[CrossRef]
    [Google Scholar]
  25. Levin, D. E., Bowers, B., Chen, C. Y., Kamada, Y. & Watanabe, M. ( 1993; ). Dissecting the protein kinase C/MAP kinase signaling pathway of Saccharomyces cerevisiae. Cell Mol Biol Res 40, 229–239.
    [Google Scholar]
  26. Luyten, K., Albertyn, J., Skibbe, W. F., Prior, B. A., Ramos, J., Thevelein, J. M. & Hohmann, S. ( 1995; ). Fps1, a yeast member of the MIP family of channel proteins, is a facilitator for glycerol uptake and efflux and is inactive under osmotic stress. EMBO J 14, 1360–1371.
    [Google Scholar]
  27. Manning, B., Padmanabha, R. & Snyder, M. ( 1997; ). The Rho-GEF Rom2p localizes to sites of polarized cell growth and participates in cytoskeletal functions in Saccharomyces cerevisiae. Mol Biol Cell 8, 1829–1844.[CrossRef]
    [Google Scholar]
  28. Martin, H., Arroyo, J., Sanchez, M., Molina, M. & Nombela, C. ( 1993; ). Activity of the yeast MAP kinase homologue Slt2 is critically required for cell integrity at 37 degrees C. Mol Gen Genet 241, 177–184.
    [Google Scholar]
  29. Martin, H., Rodriguez-Pachon, J. M., Ruiz, C., Nombela, C. & Molina, M. ( 2000; ). Regulatory mechanisms for modulation of signaling through the cell integrity Slt2-mediated pathway in Saccharomyces cerevisiae. J Biol Chem 275, 1511–1519.[CrossRef]
    [Google Scholar]
  30. Martin-Yken, H., Dagkessamanskaia, A., Talibi, D. & Francois, J. ( 2002; ). KNR4 is a member of the PKC1 signalling pathway and genetically interacts with BCK2, a gene involved in cell cycle progression in Saccharomyces cerevisiae. Curr Genet 41, 323–332.[CrossRef]
    [Google Scholar]
  31. Mrsa, V., Seidl, T., Gentzsch, M. & Tanner, W. ( 1997; ). Specific labeling of cell wall proteins by biotinylation identification of four covalently linked O-mannosylated proteins of Saccharomyces cerevisiae. Yeast 13, 1145–1154.[CrossRef]
    [Google Scholar]
  32. Nierras, C. R. & Warner, J. R. ( 1999; ). Protein kinase C enables the regulatory circuit that connects membrane synthesis to ribosome synthesis in Saccharomyces cerevisiae. J Biol Chem 274, 13235–13241.[CrossRef]
    [Google Scholar]
  33. Nonaka, H., Tanaka, K., Hirano, H., Fujiara, T., Kohno, H., Umikawa, M., Mino, A. & Takai, Y. ( 1995; ). A downstream target of the RHO1 small GTP binding protein is PKC1, a homologue of protein kinase C, which leads to activation of the MAP kinase cascade in Saccharomyces cerevisiae. EMBO J 14, 5931–5938.
    [Google Scholar]
  34. Ono, T., Suzuki, T., Anraku, Y. & Iida, H. ( 1994; ). The MID2 gene encodes a putative integral membrane protein with a Ca2+ binding domain and shows mating pheromone stimulated expression in Saccharomyces cerevisiae. Gene 151, 203–208.[CrossRef]
    [Google Scholar]
  35. Ozaki, K., Tanaka, K., Imamura, H., Hihara, T., Kameyama, T., Nonaka, H., Hirano, H., Matsuura, Y. & Takai, Y. ( 1996; ). Rom1p and Rom2p are GDP/GTP exchange proteins (GEFs) for the Rho1p small GTP binding protein in Saccharomyces cerevisiae. EMBO J 15, 2196–2207.
    [Google Scholar]
  36. Peterson, J., Zheng, Y., Bender, L., Myers, A., Cerione, R. & Bender, A. ( 1994; ). Interactions between the bud emergence proteins Bem1p and Bem2p and Rho-type GTPases in yeast. J Cell Biol 127, 1395–1406.[CrossRef]
    [Google Scholar]
  37. Philip, B. & Levin, D. ( 2001; ). Wsc1 and Mid2 are cell surface sensors for cell wall integrity signaling that act through Rom2, a guanine nucleotide exchange factor for Rho1. Mol Cell Biol 21, 271–280.[CrossRef]
    [Google Scholar]
  38. Posas, F., Chambers, J. R., Heyman, J. A., Hoeffler, J. P., de Nadal, E. & Arino, J. ( 2000; ). The transcriptional response of yeast to saline stress. J Biol Chem 275, 17249–17255.[CrossRef]
    [Google Scholar]
  39. Qadota, H., Python, C. P., Inoue, S. B., Arisawa, M., Anraku, Y., Zheng, Y., Watanabe, T., Levin, D. E. & Ohya, Y. ( 1996; ). Identification of the yeast Rho1p GTPase as a regulatory subunit of the 1,3-beta-glucan synthase. Science 272, 279–281.[CrossRef]
    [Google Scholar]
  40. Rajavel, M., Phillip, B., Buehrer, B. M., Errede, B. & Levin, D. E. ( 1999; ). Mid2 is a putative sensor for cell integrity signaling in Saccharomyces cerevisiae. Mol Cell Biol 19, 3969–3976.
    [Google Scholar]
  41. Schmidt, A., Bickle, M., Beck, T. & Hall, M. N. ( 1997; ). The yeast phosphatidylinositol kinase homologue TOR2 activates RHO1 and RHO2 via the exchange factor ROM2. Cell 88, 531–542.[CrossRef]
    [Google Scholar]
  42. Sekiya-Kawasaki, M., Abe, M., Saka, A., Watanabe, D., Kono, K., Minemura-Asakawa, M., Ishihara, S., Watanabe, T. & Ohya, Y. ( 2002; ). Dissection of upstream regulatory components of the Rho1p effector, 1,3-β-glucan synthase, in Saccharomyces cerevisiae. Genetics 162, 663–676.
    [Google Scholar]
  43. Tamas, M. J., Luyten, K., Sutherland, F. C. & 10 other authors ( 1999; ). Fps1p controls the accumulation and release of the compatible solute glycerol in yeast osmoregulation. Mol Microbiol 31, 1087–1104.[CrossRef]
    [Google Scholar]
  44. Tong, A. H. Y., Evangelista, M., Parsons, A. B. & 10 other authors ( 2001; ). Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294, 2364–2368.[CrossRef]
    [Google Scholar]
  45. Verna, J., Lodder, A., Lee, K., Vagts, A. & Ballester, R. ( 1997; ). A family of genes required for maintenance of cell wall integrity and for the stress response in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 94, 13804–13809.[CrossRef]
    [Google Scholar]
  46. Winzeler, E. A., Shoemaker, D. D., Astromoff, A. & 49 other authors ( 1999; ). Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901–906.[CrossRef]
    [Google Scholar]
  47. Zarzov, P., Mazzoni, C. & Mann, C. ( 1996; ). The SLT2(MPK1) Map kinase is activated during periods of polarized growth in yeast. EMBO J 83, 93–91.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26471-0
Loading
/content/journal/micro/10.1099/mic.0.26471-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error