1887

Abstract

The bacterial genome projects have suggested a central role for horizontal transfer in bacterial adaptation, but it is difficult to rule out an adaptive role for ordinary genetic change in existing genes. The bacterial systematics literature can readily address the importance of gene acquisition in adaptive evolution, since phenotypic characterization typically assesses presence versus absence of metabolic capabilities, and metabolic gains and losses are most likely due to horizontal transfer and/or gene loss. Bacterial systematists have not geared their studies toward quantitative differences in metabolic capabilities, which are more likely to involve adjustments of existing genes. Here, quantitative variation in metabolism within and between three closely related taxa has been assayed. While these taxa show no qualitative (i.e. presence versus absence) differences in resource utilization, they are quantitatively different in utilization of 8 % of 95 resources tested. Moreover, 93 % of the resources tested showed significant quantitative variation among strains within a single taxon. These results suggest that ordinary genetic changes in existing genes may play an important role in adaptation. If these results are typical, future genomically based assays of quantitative variation in phenotype (e.g. microarray analysis of mRNA concentrations) may identify hundreds of genes whose expression has been modified. A protocol is presented for identifying those modifications of gene expression and those gene acquisitions that are most likely to have played a role in adaptive evolution.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26457-0
2003-12-01
2020-08-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/12/mic1493565.html?itemId=/content/journal/micro/10.1099/mic.0.26457-0&mimeType=html&fmt=ahah

References

  1. Achtman M., van der Ende A., Zhu P.. 8 other authors 2001; Molecular epidemiology of serogroup a meningitis in Moscow. 1969 to 1997; Emerg Infect Dis7:420–427
    [Google Scholar]
  2. Akashi H., Gojobori T.. 2002; Metabolic efficiency and amino acid composition in the proteomes of Escherichia coli and Bacillus subtilis . Proc Natl Acad Sci U S A99:3695–3700
    [Google Scholar]
  3. Alm R. A., Ling L. S., Moir D. T.. 20 other authors 1999; Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori . Nature397:176–180
    [Google Scholar]
  4. Baba T., Takeuchi F., Kuroda M.. 11 other authors 2002; Genome and virulence determinants of high virulence community-acquired MRSA. Lancet359:1819–1827
    [Google Scholar]
  5. Baumler A. J., Gilde A. J., Tsolis R. M., van der Velden A. W., Ahmer B. M., Heffron F.. 1997; Contribution of horizontal gene transfer and deletion events to development of distinctive patterns of fimbrial operons during evolution of Salmonella serotypes. J Bacteriol179:317–322
    [Google Scholar]
  6. Beres S. B., Sylva G. L., Barbian K. D.. 13 other authors 2002; Genome sequence of a serotype M3 strain of group A Streptococcus : phage-encoded toxins, the high-virulence phenotype, and clone emergence. Proc Natl Acad Sci U S A99:10078–10083
    [Google Scholar]
  7. Bochner B. R.. 1989; Sleuthing out bacterial identities. Nature339:157–158
    [Google Scholar]
  8. Bouma J. E., Lenski R. E.. 1988; Evolution of a bacteria/plasmid association. Nature335:351–352
    [Google Scholar]
  9. Cavalieri D., Townsend J. P., Hartl D. L.. 2000; Manifold anomalies in gene expression in a vineyard isolate of Saccharomyces cerevisiae revealed by DNA microarray analysis. Proc Natl Acad Sci U S A97:12369–12374
    [Google Scholar]
  10. Chan M. S., Maiden M. C., Spratt B. G.. 2001; Database-driven multi locus sequence typing (MLST) of bacterial pathogens. Bioinformatics17:1077–1083
    [Google Scholar]
  11. Cohan F. M.. 1994a; The effects of rare but promiscuous genetic exchange on evolutionary divergence in prokaryotes. Am Nat143:965–986
    [Google Scholar]
  12. Cohan F. M.. 1994b; Genetic exchange and evolutionary divergence in prokaryotes. Trends Ecol Evol9:175–180
    [Google Scholar]
  13. Cohan F. M.. 2002a; Clonal structure: an overview. In Encyclopedia of Evolution pp159–161 Edited by Pagel M.. New York: Oxford University Press;
  14. Cohan F. M.. 2002b; What are bacterial species?. Annu Rev Microbiol56:457–487
    [Google Scholar]
  15. Cohan F. M.. 2002c; Population structure and clonality of bacteria. In Encyclopedia of Evolution pp161–163 Edited by Pagel M.. New York: Oxford University Press;
  16. Cohan F. M.. 2004; Periodic selection and ecological diversity in bacteria. In Selective Sweep Edited by Nurminsky D. Georgetown, Texas: Landes Bioscience;
  17. Cohan F. M., King E. C., Zawadzki P.. 1994; Amelioration of the deleterious pleiotropic effects of an adaptive mutation in Bacillus subtilis . Evolution48:81–95
    [Google Scholar]
  18. Cooper T. F., Rozen D. E., Lenski R. E.. 2003; Parallel changes in gene expression after 20,000 generations of evolution in Escherichia coli . Proc Natl Acad Sci U S A100:1072–1077
    [Google Scholar]
  19. Dillon W. R. M. G.. 1984; Multivariate Analysis: Methods and Applications Chichester: Wiley;
  20. Duncan K. E., Ferguson N., Kimura K., Zhou X., Istock C. A.. 1994; Fine-scale genetic and phenotypic structures in natural populations of Bacillus subtilis and Bacillus licheniformis : important implications for bacterial evolution and speciation. Evolution48:2002–2025
    [Google Scholar]
  21. Dykhuizen D. E.. 1998; Santa Rosalia revisited: why are there so many species of bacteria?. Antonie Van Leeuwenhoek73:25–33
    [Google Scholar]
  22. Feil E. J., Maiden M. C., Achtman M., Spratt B. G.. 1999; The relative contributions of recombination and mutation to the divergence of clones of Neisseria meningitidis . Mol Biol Evol16:1496–1502
    [Google Scholar]
  23. Feil E. J., Smith J. M., Enright M. C., Spratt B. G.. 2000; Estimating recombinational parameters in Streptococcus pneumoniae from multilocus sequence typing data. Genetics154:1439–1450
    [Google Scholar]
  24. Feldgarden M., Brisson D., Stoebel D. M., Dykhuizen D. E.. 2003; Size doesn't matter: microbial selection experiments address ecological phenomena. Ecology84:1679–1687
    [Google Scholar]
  25. Ferea T. L., Botstein D., Brown P. O., Rosenzweig R. F.. 1999; Systematic changes in gene expression patterns following adaptive evolution in yeast. Proc Natl Acad Sci U S A96:9721–9726
    [Google Scholar]
  26. Hall B. G.. 1999; Experimental evolution of Ebg enzyme provides clues about the evolution of catalysis and to evolutionary potential. FEMS Microbiol Lett174:1–8
    [Google Scholar]
  27. Hall B. G., Malik H. S.. 1998; Determining the evolutionary potential of a gene. Mol Biol Evol15:1055–1061
    [Google Scholar]
  28. Hamilton B. A.. 2002; Variations in abundance: genome-wide responses to genetic variation and vice versa. Genome Biol3: reviews1029
    [Google Scholar]
  29. Holt R. D.. 1987; On the relationship between niche overlap and competition: the effect of incommensurable niche dimensions. Oikos48:110–114
    [Google Scholar]
  30. Istock C. A., Bell J. A., Ferguson N., Istock N. L.. 1996; Bacterial species and evolution: theoretical and practical perspectives. J Ind Microbiol17:137–150
    [Google Scholar]
  31. Johnson J.. 1973; Use of nucleic-acid homologies in the taxonomy of anaerobic bacteria. Int J Syst Bacteriol23:308–315
    [Google Scholar]
  32. Katz L., Burge C. B.. 2003; Widespread selection for local RNA secondary structure in coding regions of bacterial genes. Genome Res13:2042–2051
    [Google Scholar]
  33. Keim P., Smith K. L.. 2002; Bacillus anthracis evolution and epidemiology. Curr Top Microbiol Immunol271:21–32
    [Google Scholar]
  34. Klevytska A. M., Price L. B., Schupp J. M., Worsham P. L., Wong J., Keim P.. 2001; Identification and characterization of variable-number tandem repeats in the Yersinia pestis genome. J Clin Microbiol39:3179–3185
    [Google Scholar]
  35. Koch A. L.. 1974; The pertinence of the periodic selection phenomenon to prokaryote evolution. Genetics77:127–142
    [Google Scholar]
  36. Kunst F., Ogasawara N., Moszer I.. 148 other authors 1997; The complete genome sequence of the gram-positive bacterium Bacillus subtilis . Nature390:249–256
    [Google Scholar]
  37. Lan R., Reeves P. R.. 1996; Gene transfer is a major factor in bacterial evolution. Mol Biol Evol13:47–55
    [Google Scholar]
  38. Lawrence J. G.. 1997; Selfish operons and speciation by gene transfer. Trends Microbiol5:355–359
    [Google Scholar]
  39. Lawrence J. G.. 1999; Gene transfer, speciation, and the evolution of bacterial genomes. Curr Opin Microbiol2:519–523
    [Google Scholar]
  40. Lawrence J. G.. 2002; Gene transfer in bacteria: speciation without species?. Theor Popul Biol61:449–460
    [Google Scholar]
  41. Levin B. R.. 1981; Periodic selection, infectious gene exchange and the genetic structure of E. coli populations. Genetics99:1–23
    [Google Scholar]
  42. Lunzer M., Natarajan A., Dykhuizen D. E., Dean A. M.. 2002; Enzyme kinetics, substitutable resources and competition: from biochemistry to frequency-dependent selection in lac . Genetics162:485–499
    [Google Scholar]
  43. Maiden M. C., Bygraves J. A., Feil E.. 10 other authors 1998; Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A95:3140–3145
    [Google Scholar]
  44. Maynard Smith J. M., Dowson C. G., Spratt B. G.. 1991; Localized sex in bacteria. Nature349:29–31
    [Google Scholar]
  45. Maynard Smith J., Smith N. H., O'Rourke M., Spratt B. G.. 1993; How clonal are bacteria?. Proc Natl Acad Sci U S A90:4384–4388
    [Google Scholar]
  46. Nakamura L. K.. 1998; Bacillus pseudomycoides sp. nov. Int J Syst Bacteriol48:1031–1035
    [Google Scholar]
  47. Nakamura L. K., Roberts M. S., Cohan F. M.. 1999; Relationship of Bacillus subtilis clades associated with strains 168 and W23: a proposal for Bacillus subtilis subsp.subtilis subsp. nov. and Bacillussubtilis subsp. spizizenii subsp. nov. Int J Syst Bacteriol49:1211–1215
    [Google Scholar]
  48. Ochman H., Groisman E. A.. 1996; Distribution of pathogenicity islands in Salmonella spp. Infect Immun64:5410–5412
    [Google Scholar]
  49. Ochman H., Lawrence J. G., Groisman E. A.. 2000; Lateral gene transfer and the nature of bacterial innovation. Nature405:299–304
    [Google Scholar]
  50. Oleksiak M. F., Churchill G. A., Crawford D. L.. 2002; Variation in gene expression within and among natural populations. Nat Genet32:261–266
    [Google Scholar]
  51. Palys T., Nakamura L. K., Cohan F. M.. 1997; Discovery and classification of ecological diversity in the bacterial world: the role of DNA sequence data. Int J Syst Bacteriol47:1145–1156
    [Google Scholar]
  52. Perna N. T., Plunkett G. 3rd, Burland V.. 25 other authors 2001; Genome sequence of enterohaemorrhagic Escherichia coli O157 : H7. Nature409:529–533
    [Google Scholar]
  53. Rainey P. B., Travisano M.. 1998; Adaptive radiation in a heterogeneous environment. Nature394:69–72
    [Google Scholar]
  54. Rice W. R.. 1989; Analyzing tables of statistical tests. Evolution43:223–225
    [Google Scholar]
  55. Roberts M. S., Cohan F. M.. 1995; Recombination and migration rates in natural populations of Bacillus subtilis and Bacillus mojavensis . Evolution49:1081–1094
    [Google Scholar]
  56. Roberts M. S., Nakamura L. K., Cohan F. M.. 1994; Bacillus mojavensis sp. nov., distinguishable from Bacillus subtilis by sexual isolation, divergence in DNA sequence, and differences in fatty acid composition. Int J Syst Bacteriol44:256–264
    [Google Scholar]
  57. Roberts M. S., Nakamura L. K., Cohan F. M.. 1996; Bacillus vallismortis sp. nov., a close relative of Bacillus subtilis , isolated from soil in Death Valley, California. Int J Syst Bacteriol46:470–475
    [Google Scholar]
  58. Rozen D. E., Lenski R. E.. 2000; Long-term experimental evolution in Escherichia coli . VIII. Dynamics of a balanced polymorphism. Am Nat155:24–35
    [Google Scholar]
  59. Schrag S. J., Perrot V., Levin B. R.. 1997; Adaptation to the fitness costs of antibiotic resistance in Escherichia coli . Proc R Soc Lond B Biol Sci264:1287–1291
    [Google Scholar]
  60. Seligmann H.. 2003; Cost-minimization of amino acid usage. J Mol Evol56:151–161
    [Google Scholar]
  61. Shirai M., Hirakawa H., Kimoto M.. 8 other authors 2000; Comparison of whole genome sequences of Chlamydia pneumoniae J138 from Japan and CWL029 from USA. Nucleic Acids Res28:2311–2314
    [Google Scholar]
  62. Sokurenko E. V., Chesnokova V., Dykhuizen D. E., Ofek I., Wu X. R., Krogfelt K. A., Struve C., Schembri M. A., Hasty D. L.. 1998; Pathogenic adaptation of Escherichia coli by natural variation of the FimH adhesin. Proc Natl Acad Sci U S A95:8922–8926
    [Google Scholar]
  63. Spiers A. J., Kahn S. G., Bohannon J., Travisano M., Rainey P. B.. 2002; Adaptive divergence in experimental populations of Pseudomonas fluorescens . I. Genetic and phenotypic bases of wrinkly spreader fitness. Genetics161:33–46
    [Google Scholar]
  64. Stackebrandt E., Frederiksen W., Garrity G. M.. 10 other authors 2002; Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol52:1043–1047
    [Google Scholar]
  65. Treves D. S., Manning S., Adams J.. 1998; Repeated evolution of an acetate-crossfeeding polymorphism in long-term populations of Escherichia coli . Mol Biol Evol15:789–797
    [Google Scholar]
  66. Zhu P., van der Ende A., Falush D.. & 13 other authors. 2001; Fit genotypes and escape variants of subgroup III Neisseria meningitidis during three pandemics of epidemic meningitis. Proc Natl Acad Sci U S A98:5234–5239
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26457-0
Loading
/content/journal/micro/10.1099/mic.0.26457-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error