Membrane-bound hydrogenase and sulfur reductase of the hyperthermophilic and acidophilic archaeon Free

Abstract

A sulfur reductase (SR) and a hydrogenase were purified from solubilized membrane fractions of anaerobically grown cells of the sulfur-dependent archaeon and the corresponding genes were sequenced. The SR reduced elemental sulfur with hydrogen as electron donor [45 U (mg protein)] in the presence of hydrogenase and either 2,3-dimethylnaphthoquinone (DMN) or cytochrome in the enzyme assay. The SR could not be separated from the hydrogenase during purification without loss of activity, whereas the hydrogenase could be separated from the SR. The specific activity of the hydrogenase was 170 U (mg protein) with methyl viologen and 833 U (mg protein) with DMN as electron acceptors. Both holoenzymes showed molecular masses of 250 kDa. In SDS gels of active fractions, protein bands with apparent masses of 110 (SreA), 66 (HynL), 41 (HynS) and 29 kDa were present. Enriched hydrogenase fractions contained 14 μmol Fe and 2 μmol Ni (g protein); in addition, 2·5 μmol Mo (g protein) was found in the membrane fraction. Two overlapping genomic cosmid clones were sequenced, encoding a five-gene SR cluster () including the 110 kDa subunit gene (), and a 12-gene hydrogenase cluster () including the large and small subunit genes and genes encoding proteins required for the maturation of NiFe hydrogenases. A phylogenetic analysis of the SR amino acid sequence revealed that the protein belonged to the DMSO reductase family of molybdoenzymes and that the family showed a novel clustering. A model of sulfur respiration in developed from the biochemical results and the data of the amino acid sequence comparisons is discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26455-0
2003-09-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/9/mic1492357.html?itemId=/content/journal/micro/10.1099/mic.0.26455-0&mimeType=html&fmt=ahah

References

  1. Adams M. W., Holden J. F., Menon A. L. 12 other authors 2001; Key role for sulfur in peptide metabolism and in regulation of three hydrogenases in the hyperthermophilic archaeon Pyrococcus furiosus . J Bacteriol 183:716–724
    [Google Scholar]
  2. Anemüller S., Lübben M., Schäfer G. 1985; The respiratory system of Sulfolobus acidocaldarius , a thermoacidophilic archaebacterium. FEBS Lett 193:83–87
    [Google Scholar]
  3. Blasco F., Dos Santos J. P., Magalon A., Frixon C., Guigliarelli B., Santini C. L., Giordano G. 1998; NarJ is a specific chaperone required for molybdenum cofactor assembly in nitrate reductase A of Escherichia coli . Mol Microbiol 28:435–447
    [Google Scholar]
  4. Dahl C., Rakhely G., Pott-Sperling A. S. 8 other authors 1999; Genes involved in hydrogen and sulfur metabolism in phototrophic sulfur bacteria. FEMS Microbiol Lett 180:317–324
    [Google Scholar]
  5. Dietrich W., Klimmek O. 2002; The function of methyl-menaquinone-6 and polysulfide reductase membrane anchor (PsrC) in polysulfide respiration of Wolinella succinogenes . Eur J Biochem 269:1086–1095
    [Google Scholar]
  6. Dirmeier R., Keller M., Frey G., Huber H., Stetter K. O. 1998; Purification and properties of an extremely thermostable membrane-bound sulfur-reducing complex from the hyperthermophilic Pyrodictium abyssi . Eur J Biochem 252:486–491
    [Google Scholar]
  7. Fauque G., Klimmek O., Kröger A. 1994; Sulfur reductases from spirilloid mesophilic sulfur-reducing eubacteria. Methods Enzymol 243:367–383
    [Google Scholar]
  8. Fischer F., Zillig W., Stetter K. O., Schreiber G. 1983; Chemolithoautotropic metabolism of anaerobic extremely thermophilic archaebacteria. Nature 301:511–513
    [Google Scholar]
  9. Fischer J., Quentmeier A., Kostka S., Kraft R., Friedrich C. G. 1996; Purification and characterization of the hydrogenase from Thiobacillus ferrooxidans . Arch Microbiol 165:289–296
    [Google Scholar]
  10. Fontecilla-Camps J., Frey M., Garcin E., Higuchi Y., Montet Y., Nicolet Y., Volbeda A. 2001; Molecular architectures. In Hydrogen as a Fuel pp 93–109 Edited by Cammack R. London: Taylor & Francis;
    [Google Scholar]
  11. Fritsche E., Paschos A., Beisel H. G., Böck A., Huber R. 1999; Crystal structure of the hydrogenase maturating endopeptidase HYBD from Escherichia coli . J Mol Biol 288:989–998
    [Google Scholar]
  12. Garcin E., Montet Y., Volbeda A., Hatchikian C., Frey M., Fontecilla-Camps J. C. 1998; Structural bases for the catalytic mechanism of [NiFe] hydrogenases. Biochem Soc Trans 26:396–401
    [Google Scholar]
  13. Gomes C. M., Teixeira M. 1998; The NADH oxidase from the thermoacidophilic archaea Acidianus ambivalens . Isolation and physicochemical properties. Biochem Biophys Res Commun 243:412–415
    [Google Scholar]
  14. Gomes C. M., Lemos R. S., Teixeira M., Kletzin A., Huber H., Stetter K. O., Schäfer G., Anemüller S. 1999; The unusual iron sulfur composition of the Acidianus ambivalens succinate dehydrogenase complex. Biochim Biophys Acta 1411134–141
    [Google Scholar]
  15. Gross R., Simon J., Theis F., Kröger A. 1998; Two membrane anchors of Wolinella succinogenes hydrogenase and their function in fumarate and polysulfide respiration. Arch Microbiol 170:50–58
    [Google Scholar]
  16. Gross R., Simon J., Kröger A. 1999; The role of the twin-arginine motif in the signal peptide encoded by the hydA gene of the hydrogenase from Wolinella succinogenes . Arch Microbiol 172:227–232
    [Google Scholar]
  17. Hedderich R., Klimmek O., Kröger A., Dirmeier R., Keller M., Stetter K. O. 1999; Anaerobic respiration with elemental sulfur and with sulfides. FEMS Microbiol Rev 22:353–381
    [Google Scholar]
  18. Jones R. 1980; Proton translocation by the membrane-bound formate dehydrogenase of Escherichia coli . FEMS Microbiol Lett 8:167–171
    [Google Scholar]
  19. Jormakka M., Tornroth S., Byrne B., Iwata S. 2002; Molecular basis of proton motive force generation: structure of formate dehydrogenase-N. Science 295:1863–1868
    [Google Scholar]
  20. King T. E., Morris R. 1967; Determination of acid-labile sulfide and sulfhydryl groups. Methods Enzymol 10:634–641
    [Google Scholar]
  21. Kisker C., Schindelin H., Baas D., Retey J., Meckenstock R. U., Kroneck P. M. 1998; A structural comparison of molybdenum cofactor-containing enzymes. FEMS Microbiol Rev 22:503–521
    [Google Scholar]
  22. Kletzin A. 1989; Coupled enzymatic production of sulfite, thiosulfate, and hydrogen sulfide from sulfur: purification and properties of a sulfur oxygenase reductase from the facultatively anaerobic archaebacterium Desulfurolobus ambivalens . J Bacteriol 171:1638–1643
    [Google Scholar]
  23. Kletzin A. 1994; Sulfur oxidation and reduction in Archaea: sulfur oxygenase/-reductase and hydrogenases from the extremely thermophilic and facultatively anaerobic Archaeon Desulfurolobus ambivalens . Syst Appl Microbiol 16:534–543
    [Google Scholar]
  24. Laska S., Kletzin A. 2000; Improved purification of the membrane-bound hydrogenase and sulfur-reductase complex from thermophilic archaea using ε -aminocaproic acid-containing chromatography buffers. J Chromatogr B 737:151–160
    [Google Scholar]
  25. Lottspeich F., Zorbas H. 1998 Bioanalytik pp 94–96 Heidelberg: Spektrum Akademischer;
  26. Ma K., Adams M. W. 1994; Sulfide dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus : a new multifunctional enzyme involved in the reduction of elemental sulfur. J Bacteriol 176:6509–6517
    [Google Scholar]
  27. Ma K., Schicho R. N., Kelly R. M., Adams M. W. 1993; Hydrogenase of the hyperthermophile Pyrococcus furiosus is an elemental sulfur reductase or sulfhydrogenase: evidence for a sulfur-reducing hydrogenase ancestor. Proc Natl Acad Sci U S A 90:5341–5344
    [Google Scholar]
  28. Ma K., Weiss R., Adams M. W. 2000; Characterization of hydrogenase II from the hyperthermophilic archaeon Pyrococcus furiosus and assessment of its role in sulfur reduction. J Bacteriol 182:1864–1871
    [Google Scholar]
  29. McMaster J., Enemark J. H. 1998; The active sites of molybdenum- and tungsten-containing enzymes. Curr Opin Chem Biol 2:201–207
    [Google Scholar]
  30. Moll R., Schäfer G. 1988; Chemiosmotic H+ cycling across the plasma membrane of the thermoacidophilic archaebacterium Sulfolobus acidocaldarius . FEBS Lett 232:359–363
    [Google Scholar]
  31. Oresnik I. J., Ladner C. L., Turner R. J. 2001; Identification of a twin-arginine leader-binding protein. Mol Microbiol 40:323–331
    [Google Scholar]
  32. Pihl T. D., Maier R. J. 1991; Purification and characterization of the hydrogen uptake hydrogenase from the hyperthermophilic archaebacterium Pyrodictium brockii . J Bacteriol 173:1839–1844
    [Google Scholar]
  33. Pihl T. D., Black L. K., Schulman B. A., Maier R. J. 1992; Hydrogen-oxidizing electron transport components in the hyperthermophilic archaebacterium Pyrodictium brockii . J Bacteriol 174:137–143
    [Google Scholar]
  34. Rakhely G., Colbeau A., Garin J., Vignais P. M., Kovacs K. L. 1998; Unusual organization of the genes coding for HydSL, the stable [NiFe]hydrogenase in the photosynthetic bacterium Thiocapsa roseopersicina BBS. J Bacteriol 180:1460–1465
    [Google Scholar]
  35. Rakhely G., Zhou Z. H., Adams M. W., Kovacs K. L. 1999; Biochemical and molecular characterization of the [NiFe] hydrogenase from the hyperthermophilic archaeon, Thermococcus litoralis . Eur J Biochem 266:1158–1165
    [Google Scholar]
  36. Ray N., Oates J., Turner R. J., Robinson C. 2003; DmsD is required for the biogenesis of DMSO reductase in Escherichia coli but not for the interaction of the DmsA signal peptide with the Tat apparatus. FEBS Lett 534:156–160
    [Google Scholar]
  37. Richard D., Sawers G., Sargent F., McWalter L., Boxer D. 1999; Transcriptional regulation in response to oxygen and nitrate of the operons encoding the [NiFe] hydrogenases 1 and 2 of Escherichia coli . Microbiology 145:2903–2912
    [Google Scholar]
  38. Ringel M., Gross R., Krafft T., Kröger A., Schauder R. 1996; Growth of Wolinella succinogenes with elemental sulfur in the absence of polysulfide. Arch Microbiol 165:62–64
    [Google Scholar]
  39. Robson R. L. 2001a; Biodiversity of hydrogenases. In Hydrogen as a Fuel pp 9–32 Edited by Cammack R. London: Taylor & Francis;
    [Google Scholar]
  40. Robson R. L. 2001b; The assembly line. In Hydrogen as a Fuel pp 57–72 Edited by Cammack R. London: Taylor & Francis;
    [Google Scholar]
  41. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  42. Sapra R., Verhagen M. F., Adams M. W. 2000; Purification and characterization of a membrane-bound hydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus . J Bacteriol 182:3423–3428
    [Google Scholar]
  43. Schäfer G., Purschke W. G., Gleissner M., Schmidt C. L. 1996; Respiratory chains of archaea and extremophiles. Biochim Biophys Acta 1275:16–20
    [Google Scholar]
  44. Schägger H. 1994; Native gel electrophoresis. In A Practical Guide to Membrane Protein Purification pp 81–106 Edited by von Jagow G., Schägger H. San Diego: Academic Press;
    [Google Scholar]
  45. Schauder R., Kröger A. 1993; Bacterial sulphur respiration. Arch Microbiol 159:491–497
    [Google Scholar]
  46. Schicho R. N., Ma K., Adams M. W., Kelly R. M. 1993; Bioenergetics of sulfur reduction in the hyperthermophilic archaeon Pyrococcus furiosus . J Bacteriol 175:1823–1830
    [Google Scholar]
  47. Schröder I., Kröger A., Macy J. M. 1988; Isolation of the sulphur reductase and reconstitution of the sulphur respiration of Wolinella succinogenes . Arch Microbiol 149:572–579
    [Google Scholar]
  48. Schut G., Zhou J., Adams M. 2001; DNA microarray analysis of the hyperthermophilic archaeon Pyrococcus furiosus : evidence for a new type of sulfur-reducing enzyme complex. J Bacteriol 183:7027–7036
    [Google Scholar]
  49. She Q., Singh R. K., Confalonieri F. 28 other authors 2001; The complete genome of the crenarchaeon Sulfolobus solfataricus P2. Proc Natl Acad Sci U S A 98:7835–7840
    [Google Scholar]
  50. Trincone A., Lanzotti V., Nicolaus B., Zillig W., Derosa M., Gambacorta A. 1989; Comparative lipid-composition of aerobically and anaerobically grown Desulfurolobus ambivalens , an autotrophic thermophilic archaeobacterium. J Gen Microbiol 135:2751–2757
    [Google Scholar]
  51. Vignais P., Billoud B., Meyer J. 2001; Classification and phylogeny of hydrogenases. FEMS Microbiol Rev 25:455–501
    [Google Scholar]
  52. Volbeda A., Charon M. H., Piras C., Hatchikian E. C., Frey M., Fontecilla-Camps J. C. 1995; Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas . Nature 373:580–587
    [Google Scholar]
  53. Wilson K. others 1990; Preparation of genomic DNA from bacteria. In Current Protocols in Molecular Biology pp 2.4.1–2.4.5 Edited by Ausubel F. M. New York: Wiley;
    [Google Scholar]
  54. Wu L. F., Chanal A., Rodrigue A. 2000; Membrane targeting and translocation of bacterial hydrogenases. Arch Microbiol 173:319–324
    [Google Scholar]
  55. Zillig W., Yeats S., Holz I., Böck A., Gropp F., Rettenberger M., Lutz S. 1985; Plasmid-related anaerobic autotrophy of the novel archaebacterium Sulfolobus ambivalens . Nature 313:789–791
    [Google Scholar]
  56. Zillig W., Yeats S., Holz I., Böck A., Rettenberger M., Gropp F., Simon G. 1986; Desulfurolobus ambivalens gen. nov., sp. nov., an autotrophic archaebacterium facultatively oxidizing and reducing sulfur. Syst Appl Microbiol 8:197–203
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26455-0
Loading
/content/journal/micro/10.1099/mic.0.26455-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed