Identification of proteins coordinately induced by acidic amino acids and their amides: a two-dimensional electrophoresis study Free

Abstract

The acidic amino acids (Asp, Glu) and their amides (Asn, Gln) are excellent growth substrates for many pseudomonads. This paper presents proteomics data indicating that growth of ATCC 13525 and KT2440 on these amino acids as sole source of carbon and nitrogen leads to the induction of a defined set of proteins. Using mass spectrometry and N-terminal sequencing, a number of these proteins were identified as enzymes and transporters involved in amino acid uptake and metabolism. Most of them depended on the alternative sigma factor for expression and were subject to strong carbon catabolite repression by glucose and citrate cycle intermediates. For a subset of the identified proteins, the observed regulatory effects were independently confirmed by RT-PCR. The authors propose that the respective genes (together with others still to be identified) make up a regulon that mediates uptake and utilization of the abovementioned amino acids.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26454-0
2003-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/10/mic1492909.html?itemId=/content/journal/micro/10.1099/mic.0.26454-0&mimeType=html&fmt=ahah

References

  1. Bagdasarian M., Timmis K. N. 1982; Host-vector systems for gene cloning in Pseudomonas . Curr Top Microbiol Immunol 96:47–67
    [Google Scholar]
  2. Barber D. A., Gunn K. B. 1974; The effect of mechanical forces on the exudation of organic substances by the roots of cereal plants grown under sterile conditions. New Phytol 73:39–45
    [Google Scholar]
  3. Bayliss C., Bent E., Culham D. E., MacLellan S., Clarke A. J., Brown G. L., Wood J. M. 1997; Bacterial genetic loci implicated in the Pseudomonas putida GR12–2R3-canola mutualism: identification of an exudate-inducible sugar transporter. Can J Microbiol 43:809–818
    [Google Scholar]
  4. Bloemberg G. V., Lugtenberg B. J. 2001; Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4:343–350
    [Google Scholar]
  5. Buck M., Gallegos M. T., Studholme D. J., Guo Y., Gralla J. D. 2000; The bacterial enhancer-dependent σ 54 ( σ N) transcription factor. J Bacteriol 182:4129–4136
    [Google Scholar]
  6. Chang C., Stewart R. C. 1998; The two-component system. Regulation of diverse signaling pathways in prokaryotes and eukaryotes. Plant Physiol 117:723–731
    [Google Scholar]
  7. Derst C., Henseling J., Röhm K. H. 1992; Probing the role of threonine and serine residues of E. coli asparaginase II by site specific mutagenesis. Protein Eng 5:785–789
    [Google Scholar]
  8. Espinosa-Urgel M., Ramos J. L. 2001; Expression of a Pseudomonas putida aminotransferase involved in lysine catabolism is induced in the rhizosphere. Appl Environ Microbiol 67:5219–5224
    [Google Scholar]
  9. Fan T. W., Lane A. N., Pedler J., Crowley D., Higashi R. M. 1997; Comprehensive analysis of organic ligands in whole root exudates using nuclear magnetic resonance and gas chromatography-mass spectrometry. Anal Biochem 251:57–68
    [Google Scholar]
  10. Hüser A., Klöppner U., Röhm K. H. 1999; Cloning, sequence analysis, and expression of ansB from Pseudomonas fluorescens , encoding periplasmic glutaminase/asparaginase. FEMS Microbiol Lett 178:327–335
    [Google Scholar]
  11. Ikai H., Yamamoto S. 1997; Identification and analysis of a gene encoding l-2,4-diaminobutyrate: 2-ketoglutarate 4-aminotransferase involved in the 1,3-diaminopropane production pathway in Acinetobacter baumannii . J Bacteriol 179:5118–5125
    [Google Scholar]
  12. Jones D. L., Darrah P. R. 1993; Influx and efflux of amino acids from Zea mays L. roots and their implications for N-nutrition and the rhizosphere. Plant Soil 155:87–90
    [Google Scholar]
  13. Köhler T., Harayama S., Ramos J. L., Timmis K. N. 1989; Involvement of Pseudomonas putida RpoN σ factor in regulation of various metabolic functions. J Bacteriol 171:4326–4333
    [Google Scholar]
  14. Konan K. V., Yanofsky C. 2000; Rho-dependent transcription termination in the tna operon of Escherichia coli : roles of the boxA sequence and the rut site. J Bacteriol 182:3981–3988
    [Google Scholar]
  15. Kuiper I., Bloemberg G. V., Noreen S., Thomas-Oates J. E., Lugtenberg B. J. 2001; Increased uptake of putrescine in the rhizosphere inhibits competitive root colonization by Pseudomonas fluorescens strain WCS365. Mol Plant–Microbe Interact 14:1096–1104
    [Google Scholar]
  16. Kyhse-Anderson J. 1984; Electroblotting of multiple gels. A simple apparatus with buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose. J Biochem Biophys Methods 10:105–132
    [Google Scholar]
  17. Lee S. H., Hidaka T., Nakashita H., Seto H. 1995; The carboxyphosphonoenolpyruvate synthase-encoding gene from the bialaphos-producing organism Streptomyces hygroscopicus . Gene 153:143–144
    [Google Scholar]
  18. Lugtenberg B. J., Kravchenko L. V., Simons M. 1999; Tomato seed and root exudate sugars: composition, utilization by Pseudomonas biocontrol strains and role in rhizosphere colonization. Environ Microbiol 1:439–446
    [Google Scholar]
  19. Merrick M. J. 1993; In a class of its own – the RNA polymerase sigma factor σ 54 ( σ N . Mol Microbiol 10:903–909
    [Google Scholar]
  20. Nelson K., Paulsen I., Weinel C. 39 other authors 2002; Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol 4:799–808
    [Google Scholar]
  21. Ochs M. M., Lu C. D., Hancock R. E., Abdelal A. T. 1999; Amino acid-mediated induction of the basic amino acid-specific outer membrane porin OprD from Pseudomonas aeruginosa . J Bacteriol 181:5426–5432
    [Google Scholar]
  22. Otto A., Thiede B., Müller E. C., Scheler C., Wittmann-Liebold B., Jungblut P. 1996; Identification of human myocardial proteins separated by two-dimensional electrophoresis using an effective sample preparation for mass spectrometry. Electrophoresis 17:1643–1650
    [Google Scholar]
  23. Reitzer J. L. 1996a; Sources of nitrogen and their utilization. In Escherichia coli and Salmonella typhimurium : Cellular and Molecular Biology , 2nd edn. pp  380–390 Washington, DC: American Society for Microbiology;
    [Google Scholar]
  24. Reitzer L. J. 1996b; Ammonia assimilation and the biosynthesis of glutamine, glutamate, aspartate, asparagine, l-alanine, and d-alanine. In Escherichia coli and Salmonella : Cellular and Molecular Biology , 2nd edn. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  25. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning : a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  26. Sauer K., Camper A. K. 2001; Characterization of phenotypic changes in Pseudomonas putida in response to surface-associated growth. J Bacteriol 183:6579–6589
    [Google Scholar]
  27. Sonawane A., Klöppner U., Derst C., Röhm K. H. 2003; Utilization of acidic amino acids and their amides by pseudomonads: role of periplasmic glutaminase-asparaginase. Arch Microbiol 179:151–159
    [Google Scholar]
  28. Studholme D. J., Buck M., Nixon T. 2000; Identification of potential σ N-dependent promoters in bacterial genomes. Microbiology 146:3021–3023
    [Google Scholar]
  29. Trias J., Nikaido H. 1990; Protein D2 channel of the Pseudomonas aeruginosa outer membrane has a binding site for basic amino acids and peptides. J Biol Chem 265:15680–15684
    [Google Scholar]
  30. van Overbeek L. S., van Elsas J. D. 1995; Root exudate-induced promoter activity in Pseudomonas fluorescens mutants in the wheat rhizosphere. Appl Environ Microbiol 61:890–898
    [Google Scholar]
  31. Vilchez S., Manzanera M., Ramos J. L. 2000a; Control of expression of divergent Pseudomonas putida put promoters for proline catabolism. Appl Environ Microbiol 66:5221–5225
    [Google Scholar]
  32. Vilchez S., Molina L., Ramos C., Ramos J. L. 2000b; Proline catabolism by Pseudomonas putida : cloning, characterization, and expression of the put genes in the presence of root exudates. J Bacteriol 182:91–99
    [Google Scholar]
  33. Wang Y. P., Birkenhead K., Boesten B., Manian S., O'Gara F. 1989; Genetic analysis and regulation of the Rhizobium meliloti genes controlling C4-dicarboxylic acid transport. Gene 85:135–144
    [Google Scholar]
  34. Wu L., Welker N. E. 1991; Cloning and characterization of a glutamine transport operon of Bacillus stearothermophilus NUB36: effect of temperature on regulation of transcription. J Bacteriol 173:4877–4888
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26454-0
Loading
/content/journal/micro/10.1099/mic.0.26454-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed