1887

Abstract

The HmbR outer-membrane receptor enables to use haemoglobin (Hb) as a source of iron. This protein functions by binding Hb, removing haem from it, and releasing the haem into the periplasm. Functionally important HmbR receptor domains were discerned using a series of HmbR deletions and site-directed mutations. Mutations exhibiting similar defective phenotypes in fell into two groups. The first group of mutations affected Hb binding and were located in putative extracellular loops (L) L2 (amino acid residues (aa) 192–230) and L3 (aa 254–284). The second group of mutations resulted in a failure to utilize Hb but proficiency in Hb binding was retained. These mutations localized to the putative extracellular loops L6 (aa 420–462) and L7 (aa 486–516). A highly conserved protein motif found in all haem/Hb receptors, within putative extracellular loop L7 of HmbR, is essential for Hb utilization but not required for Hb binding. This finding suggests a mechanistic involvement of this motif in haem removal from Hb. In addition, an amino-terminal deletion in the putative cork-like domain of HmbR affected Hb usage but not Hb binding. This result supports a role of the cork domain in utilization steps that are subsequent to Hb binding.

Keyword(s): Hb, haemoglobin
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26448-0
2003-12-01
2020-09-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/12/mic1493423.html?itemId=/content/journal/micro/10.1099/mic.0.26448-0&mimeType=html&fmt=ahah

References

  1. Barnard T. J., Watson M. E. Jr, McIntosh M. A.. 2001; Mutations in the Escherichia coli receptor FepA reveal residues involved in ligand binding and transport. Mol Microbiol41:527–536
    [Google Scholar]
  2. Baumler A. J., Hantke K.. 1992; Ferrioxamine uptake in Yersinia enterocolitica : characterization of the receptor protein FoxA. Mol Microbiol6:1309–1321
    [Google Scholar]
  3. Benson S. A., Occi J. L., Sampson B. A.. 1988; Mutations that alter the pore function of the OmpF porin of Escherichia coli K12. J Mol Biol203:961–970
    [Google Scholar]
  4. Boulanger P., le Maire M., Bonhivers M., Dubois S., Desmadril M., Letellier L.. 1996; Purification and structural and functional characterization of FhuA, a transporter of the Escherichia coli outer membrane. Biochemistry35:14216–14224
    [Google Scholar]
  5. Bracken C. S., Baer M. T., Abdur-Rashid A., Helms W., Stojiljkovic I.. 1999; Use of heme-protein complexes by the Yersinia enterocolitica HemR receptor: histidine residues are essential for receptor function. J Bacteriol181:6063–6072
    [Google Scholar]
  6. Braun M., Killmann H., Braun V.. 1999; The beta-barrel domain of FhuADelta5–160 is sufficient for TonB-dependent FhuA activities of Escherichia coli . Mol Microbiol33:1037–1049
    [Google Scholar]
  7. Buchanan S. K.. 1999; Beta-barrel proteins from bacterial outer membranes: structure, function and refolding. Curr Opin Struct Biol9:455–461
    [Google Scholar]
  8. Buchanan S. K., Smith B. S., Venkatramani L., Xia D., Esser L., Palnitkar M., Chakraborty R., van der Helm D., Deisenhofer J.. 1999; Crystal structure of the outer membrane active transporter FepA from Escherichia coli . Nat Struct Biol6:56–63
    [Google Scholar]
  9. Carmel G., Coulton J. W.. 1991; Internal deletions in the FhuA receptor of Escherichia coli K-12 define domains of ligand interactions. J Bacteriol173:4394–4403
    [Google Scholar]
  10. Clarke T. E., Tari L. W., Vogel H. J.. 2001; Structural biology of bacterial iron uptake systems. Curr Top Med Chem1:7–30
    [Google Scholar]
  11. Cope L. D., Thomas C. E., Latimer J. L., Slaughter C. A., Muller-Eberhard U., Hansen E. J.. 1994; The 100 kDa haem : haemopexin-binding protein of Hemophilus influenzae : structure and function. Mol Microbiol13:863–873
    [Google Scholar]
  12. Eisenberg D., Schwarz E., Komaromy M., Wall R.. 1984; Analysis of membrane and surface protein sequences with the hydrophobic moment plot. J Mol Biol179:125–142
    [Google Scholar]
  13. Ferguson A. D., Hofmann E., Coulton J. W., Diederichs K., Welte W.. 1998; Siderophore-mediated iron transport: crystal structure of FhuA with bound lipopolysaccharide. Science282:2215–2220
    [Google Scholar]
  14. Ferguson A. D., Chakraborty R., Smith B. S., Esser L., van der Helm D., Deisenhofer J.. 2002; Structural basis of gating by the outer membrane transporter FecA. Science295:1715–1719
    [Google Scholar]
  15. Genco C. A., Dixon D. W.. 2001; Emerging strategies in microbial haem capture. Mol Microbiol39:1–11
    [Google Scholar]
  16. Gray-Owen S. D., Schryvers A. B.. 1996; Bacterial transferrin and lactoferrin receptors. Trends Microbiol4:185–191
    [Google Scholar]
  17. Gribskov M., Burgess R. R., Devereux J.. 1986; PEPPLOT, a protein secondary structure analysis program for the UWGCG sequence analysis software package. Nucleic Acids Res14:327–334
    [Google Scholar]
  18. Griffiths E.. 1999; Iron and Infection: Molecular, Physiological and Clinical Aspects , 2nd edn. Chichester: Wiley;
  19. Guzman L. M., Belin D., Carson M. J., Beckwith J.. 1995; Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol177:4121–4130
    [Google Scholar]
  20. Hantke K.. 1981; Regulation of ferric iron transport in Escherichia coli K12: isolation of a constitutive mutant. Mol Gen Genet182:288–292
    [Google Scholar]
  21. Henderson D. P., Payne S. M.. 1994; Characterization of the Vibrio cholerae outer membrane heme transport protein HutA: sequence of the gene, regulation of expression, and homology to the family of TonB-dependent proteins. J Bacteriol176:3269–3277
    [Google Scholar]
  22. Howard S. P., Herrmann C., Stratilo C. W., Braun V.. 2001; In vivo synthesis of the periplasmic domain of TonB inhibits transport through the FecA and FhuA iron siderophore transporters of Escherichia coli . J Bacteriol183:5885–5895
    [Google Scholar]
  23. Jeanteur D., Lakey J. H., Pattus F.. 1991; The bacterial porin superfamily: sequence alignment and structure prediction. Mol Microbiol5:2153–2164
    [Google Scholar]
  24. Johnston D. M., Cannon J. G.. 1999; Construction of mutant strains of Neisseria gonorrhoeae lacking new antibiotic resistance markers using a two gene cassette with positive and negative selection. Gene236:179–184
    [Google Scholar]
  25. Kellogg D. S., Peacock W. L., Deacon W. E., Brown L., Pirkle C. I.. 1963; Neisseria gonorrhoeae . I. Virulence genetically linked to clonal variation. J Bacteriol85:1274–1279
    [Google Scholar]
  26. Killmann H., Benz R., Braun V.. 1996; Properties of the FhuA channel in the Escherichia coli outer membrane after deletion of FhuA portions within and outside the predicted gating loop. J Bacteriol178:6913–6920
    [Google Scholar]
  27. Killmann H., Braun M., Herrmann C., Braun V.. 2001; FhuA barrel-cork hybrids are active transporters and receptors. J Bacteriol183:3476–3487
    [Google Scholar]
  28. Klebba P. E., Hofnung M., Charbit A.. 1994; A model of maltodextrin transport through the sugar-specific porin, LamB, based on deletion analysis. EMBO J13:4670–4675
    [Google Scholar]
  29. Koebnik R., Braun V.. 1993; Insertion derivatives containing segments of up to 16 amino acids identify surface- and periplasm-exposed regions of the FhuA outer membrane receptor of Escherichia coli K-12. J Bacteriol175:826–839
    [Google Scholar]
  30. Koebnik R., Locher K. P., Van Gelder P.. 2000; Structure and function of bacterial outer membrane proteins: barrels in a nutshell. Mol Microbiol37:239–253
    [Google Scholar]
  31. Lambert O., Moeck G. S., Levy D., Plancon L., Letellier L., Rigaud J. L.. 1999; An 8-Å projected structure of FhuA, A “ligand-gated” channel of the Escherichia coli outer membrane. J Struct Biol126:145–155
    [Google Scholar]
  32. Lathrop J. T., Wei B. Y., Touchie G. A., Kadner R. J.. 1995; Sequences of the Escherichia coli BtuB protein essential for its insertion and function in the outer membrane. J Bacteriol177:6810–6819
    [Google Scholar]
  33. Letoffe S., Ghigo J. M., Wandersman C.. 1994; Iron acquisition from heme and hemoglobin by a Serratia marcescens extracellular protein. Proc Natl Acad Sci U S A91:9876–9880
    [Google Scholar]
  34. Letoffe S., Redeker V., Wandersman C.. 1998; Isolation and characterization of an extracellular haem-binding protein from Pseudomonas aeruginosa that shares function and sequence similarities with the Serratia marcescens HasA haemophore. Mol Microbiol28:1223–1234
    [Google Scholar]
  35. Liu J., Rutz J. M., Feix J. B., Klebba P. E.. 1993; Permeability properties of a large gated channel within the ferric enterobactin receptor, FepA. Proc Natl Acad Sci U S A90:10653–10657
    [Google Scholar]
  36. Locher K. P., Rees B., Koebnik R., Mitschler A., Moulinier L., Rosenbusch J. P., Moras D.. 1998; Transmembrane signaling across the ligand-gated FhuA receptor: crystal structures of free and ferrichrome-bound states reveal allosteric changes. Cell95:771–778
    [Google Scholar]
  37. Newton S. M., Igo J. D., Scott D. C., Klebba P. E.. 1999; Effect of loop deletions on the binding and transport of ferric enterobactin by FepA. Mol Microbiol32:1153–1165
    [Google Scholar]
  38. Pettersson A., Klarenbeek V., van Deurzen J., Poolman J. T., Tommassen J.. 1994; Molecular characterization of the structural gene for the lactoferrin receptor of the meningococcal strain H44/76. Microb Pathog17:395–408
    [Google Scholar]
  39. Postle K.. 1999; Active transport by customized beta-barrels. Nat Struct Biol6:3–6
    [Google Scholar]
  40. Ratliff M., Zhu W., Deshmukh R., Wilks A., Stojiljkovic I.. 2001; Homologues of neisserial heme oxygenase in gram-negative bacteria: degradation of heme by the product of the pigA gene of Pseudomonas aeruginosa . J Bacteriol183:6394–6403
    [Google Scholar]
  41. Richardson A. R., Stojiljkovic I.. 1999; HmbR, a hemoglobin-binding outer membrane protein of Neisseria meningitidis , undergoes phase variation. J Bacteriol181:2067–2074
    [Google Scholar]
  42. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  43. Schirmer T., Cowan S. W.. 1993; Prediction of membrane-spanning beta-strands and its application to maltoporin. Protein Sci2:1361–1363
    [Google Scholar]
  44. Schryvers A. B., Stojiljkovic I.. 1999; Iron acquisition systems in the pathogenic Neisseria . Mol Microbiol32:1117–1123
    [Google Scholar]
  45. Schryvers A. B., Bonnah R., Yu R. H., Wong H., Retzer M.. 1998; Bacterial lactoferrin receptors. Adv Exp Med Biol443:123–133
    [Google Scholar]
  46. Scott D. C., Cao Z., Qi Z., Bauler M., Igo J. D., Newton S. M., Klebba P. E.. 2001; Exchangeability of N termini in the ligand-gated porins of Escherichia coli . J Biol Chem276:13025–13033
    [Google Scholar]
  47. Stojiljkovic I., Hantke K.. 1992; Hemin uptake system of Yersinia enterocolitica : similarities with other TonB-dependent systems in gram-negative bacteria. EMBO J11:4359–4367
    [Google Scholar]
  48. Stojiljkovic I., Hantke K.. 1994; Transport of haemin across the cytoplasmic membrane through a haemin-specific periplasmic binding-protein-dependent transport system in Yersinia enterocolitica . Mol Microbiol13:719–732
    [Google Scholar]
  49. Stojiljkovic I., Perkins-Balding D.. 2002; Processing of heme and heme-containing proteins by bacteria. DNA Cell Biol21:281–295
    [Google Scholar]
  50. Stojiljkovic I., Srinivasan N.. 1997; Neisseria meningitidis tonB, exbB, and exbD genes: Ton-dependent utilization of protein-bound iron in Neisseriae . J Bacteriol179:805–812
    [Google Scholar]
  51. Stojiljkovic I., Hwa V., de Saint Martin L., O'Gaora P., Nassif X., Heffron F., So M.. 1995; The Neisseria meningitidis haemoglobin receptor: its role in iron utilization and virulence. Mol Microbiol15:531–541
    [Google Scholar]
  52. Stojiljkovic I., Larson J., Hwa V., Anic S., So M.. 1996; HmbR outer membrane receptors of pathogenic Neisseria spp. iron-regulated, hemoglobin-binding proteins with a high level of primary structure conservation. J Bacteriol178:4670–4678
    [Google Scholar]
  53. Urushibara N., Kumazaki T., Ishii S.. 1992; Hemoglobin-binding site on human haptoglobin. Identification of lysyl residues participating in the binding. J Biol Chem267:13413–13417
    [Google Scholar]
  54. Usher K. C., Ozkan E., Gardner K. H., Deisenhofer J.. 2001; The plug domain of FepA, a TonB-dependent transport protein from Escherichia coli , binds its siderophore in the absence of the transmembrane barrel domain. Proc Natl Acad Sci U S A98:10676–10681
    [Google Scholar]
  55. Vakharia H. L., Postle K.. 2002; FepA with globular domain deletions lacks activity. J Bacteriol184:5508–5512
    [Google Scholar]
  56. Van Der Helm D., Chakraborty R., Ferguson A. D., Smith B. S., Esser L., Deisenhofer J.. 2002; Bipartite gating in the outer membrane protein FecA. Biochem Soc Trans30:708–710
    [Google Scholar]
  57. Wandersman C., Stojiljkovic I.. 2000; Bacterial heme sources: the role of heme, hemoprotein receptors and hemophores. Curr Opin Microbiol3:215–220
    [Google Scholar]
  58. Wang R. F., Kushner S. R.. 1991; Construction of versatile low-copy-number vectors for cloning, sequencing and gene expression in Escherichia coli . Gene100:195–199
    [Google Scholar]
  59. Winkelmann G.. 2002; Microbial siderophore-mediated transport. Biochem Soc Trans30:691–696
    [Google Scholar]
  60. Zhu W., Wilks A., Stojiljkovic I.. 2000a; Degradation of heme in gram-negative bacteria: the product of the hemO gene of Neisseriae is a heme oxygenase. J Bacteriol182:6783–6790
    [Google Scholar]
  61. Zhu W., Hunt D. J., Richardson A. R., Stojiljkovic I.. 2000b; Use of heme compounds as iron sources by pathogenic neisseriae requires the product of the hemO gene. J Bacteriol182:439–447
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26448-0
Loading
/content/journal/micro/10.1099/mic.0.26448-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error