1887

Abstract

ClpYQ protease and Lon protease possess a redundant function for degradation of SulA, a cell division inhibitor. An experimental cue implied that the capsule synthesis activator RcsA, a known substrate of Lon, is probably a specific substrate for the ClpYQ protease. This paper shows that overexpression of ClpQ and ClpY suppresses the mucoid phenotype of a mutant. Since the () gene, involved in capsule synthesis, is activated by RcsA, the reporter construct was used to assay for -galactosidase activity and thus follow RcsA stability. The expression of was increased in double mutants of in combination with or/and mutation(s) compared with the wild-type or single mutants. Overproduction of ClpYQ or ClpQ decreased expression. Additionally, a P fusion construct showed quantitatively that an inducible RcsA activates expression. The effect of RcsA on expression was shown to be influenced by the ClpYQ activities. Moreover, a translational fusion construct showed higher activity of RcsA–LacZ in a strain than in the wild-type. By contrast, overproduction of cellular ClpYQ resulted in decreased -galactosidase levels of RcsA–LacZ. Taken together, the data indicate that ClpYQ acts as a secondary protease in degrading the Lon substrate RcsA.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26446-0
2004-02-01
2019-10-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/2/mic1500437.html?itemId=/content/journal/micro/10.1099/mic.0.26446-0&mimeType=html&fmt=ahah

References

  1. Blattner, F. R., Plunkett, G., III, Bloch, C. A. & 14 other authors ( 1997; ). The complete genome sequence of Escherichia coli K-12. Science 277, 1453–1474.[CrossRef]
    [Google Scholar]
  2. Bochtler, M., Hartmann, C., Song, H. K., Bourenkov, G. P., Bartunik, H. D. & Huber, R. ( 2000; ). The structures of HslU and the ATP-dependent protease HslU-HslV. Nature 403, 800–805.[CrossRef]
    [Google Scholar]
  3. Bogyo, M., McMaster, J. S., Gaczynska, M., Tortorella, D., Goldberg, A. L. & Ploegh, H. ( 1997; ). Covalent modification of the active site threonine of proteasomal β subunits and the Escherichia coli homolog HslV by a new class of inhibitors. Proc Natl Acad Sci U S A 94, 6629–6634.[CrossRef]
    [Google Scholar]
  4. Chuang, S.-E., Burland, V., Plunkett, G., III, Daniels, D. L. & Blattner, F. R. ( 1993; ). Sequence analysis of four new heat-shock genes constituting the hslTS/ibpAB and hslVU operons in Escherichia coli. Gene 134, 1–6.[CrossRef]
    [Google Scholar]
  5. Chung, C. H. & Goldberg, A. L. ( 1981; ). The product of the lon (capR) gene in Escherichia coli is the ATP-dependent protease, protease La. Proc Natl Acad Sci U S A 78, 4931–4935.[CrossRef]
    [Google Scholar]
  6. Chung, C. T., Niemela, S. L. & Miller, R. H. ( 1989; ). One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution. Proc Natl Acad Sci U S A 86, 2172–2175.[CrossRef]
    [Google Scholar]
  7. Ebel, W. & Trempy, J. E. ( 1999; ). Escherichia coli RcsA, a positive activator of colanic acid capsular polysaccharide synthesis, functions to activate its own expression. J Bacteriol 181, 577–584.
    [Google Scholar]
  8. Goldberg, A. L., Moerschell, R. P., Chung, C. H. & Maurizi, M. R. ( 1994; ). ATP-dependent protease La (lon) from Escherichia coli. Methods Enzymol 244, 350–375.
    [Google Scholar]
  9. Gottesman, S. ( 1996; ). Proteases and their targets in Escherichia coli. Annu Rev Genet 30, 465–506.[CrossRef]
    [Google Scholar]
  10. Gottesman, S., Clark, W. P., de Crecy-Lagard, V. & Maurizi, M. R. ( 1993; ). ClpX, an alternative subunit for the ATP-dependent Clp protease of Escherichia coli. J Biol Chem 268, 22618–22626.
    [Google Scholar]
  11. Gottesman, S., Roche, E., Zhou, Y.-N. & Sauer, R. T. ( 1998; ). The ClpXP and ClpAP proteases degrade proteins with carboxy-terminal peptide tails added by the SsrA-tagging system. Genes Dev 12, 1338–1347.[CrossRef]
    [Google Scholar]
  12. Guzman, L.-M., Belin, D., Carson, M. J. & Beckwith, J. ( 1995; ). Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177, 4121–4130.
    [Google Scholar]
  13. Kanemori, M., Nishihara, K., Yanagi, H. & Yura, T. ( 1997; ). Synergistic roles of HslVU and other ATP-dependent proteases in controlling in vivo turnover of σ 32 and abnormal proteins in Escherichia coli. J Bacteriol 179, 7219–7225.
    [Google Scholar]
  14. Kanemori, M., Yanagi, H. & Yura, T. ( 1999; ). The ATP-dependent HslVU/ClpQY protease participates in turnover of cell division inhibitor SulA in Escherichia coli. J Bacteriol 181, 3674–3680.
    [Google Scholar]
  15. Katayama-Fujimura, Y., Gottesman, S. & Maurizi, M. R. ( 1987; ). A multiple-component, ATP-dependent protease from Escherichia coli. J Biol Chem 262, 4477–4485.
    [Google Scholar]
  16. Kessel, M., Wu, W.-F., Gottesman, S., Kocsis, E., Steven, A. C. & Maurizi, M. R. ( 1996; ). Six-fold rotational symmetry of ClpQ, the E. coli homolog of the 20S proteasome, and its ATP-dependent activator, ClpY. FEBS Lett 398, 274–278.[CrossRef]
    [Google Scholar]
  17. Khattar, M. M. ( 1997; ). Overexpression of the hslVU operon suppresses SOS-mediated inhibition of cell division in Escherichia coli. FEBS Lett 414, 402–404.[CrossRef]
    [Google Scholar]
  18. Laemmli, U. K. ( 1970; ). Cleavage of structure proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.[CrossRef]
    [Google Scholar]
  19. Lee, Y.-Y., Chang, C.-F., Kuo, C.-L., Chen, M.-C., Yu, C. H., Lin, P.-I. & Wu, W. F. ( 2003; ). Subunit oligomerization and substrate recognition of the Escherichia coli ClpYQ (HslUV) protease implicated by in vivo protein-protein interactions in the yeast two-hybrid system. J Bacteriol 185, 2393–2401.[CrossRef]
    [Google Scholar]
  20. Maurizi, M. R., Trisler, P. & Gottesman, S. ( 1985; ). Insertional mutagenesis of the lon gene in Escherichia coli: lon is dispensable. J Bacteriol 164, 1124–1135.
    [Google Scholar]
  21. Maurizi, M. R., Clark, W. P., Kim, S.-H. & Gottesman, S. ( 1990a; ). ClpP represents a unique family of serine proteases. J Biol Chem 265, 12546–12552.
    [Google Scholar]
  22. Maurizi, M. R., Clark, W. P., Katayama, Y., Rudikoff, S., Pumphrey, J., Bowers, B. & Gottesman, S. ( 1990b; ). Sequence and structure of ClpP, the proteolytic component of the ATP-dependent Clp protease of Escherichia coli. J Biol Chem 265, 12536–12545.
    [Google Scholar]
  23. Miller, J. H. ( 1972; ). Experiments in Bacterial Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  24. Missiakas, D., Schwager, F., Betton, J. M., Georgopoulos, C. & Raina, S. ( 1996; ). Identification and characterization of HslV HslU(ClpQ ClpY) proteins involved in overall proteolysis of misfolded proteins in Escherichia coli. EMBO J 15, 6899–6909.
    [Google Scholar]
  25. Porankiewicz, J., Wang, J. & Clarke, A. K. ( 1999; ). New insights into the ATP-dependent Clp protease: Escherichia coli and beyond. Mol Microbiol 32, 449–458.[CrossRef]
    [Google Scholar]
  26. Rohrwild, M., Coux, O., Huang, H.-C., Moerschell, R. P., Yoo, S. J., Seol, J. H., Chung, C. H. & Goldberg, A. L. ( 1996; ). HslV-HslU: a novel ATP-dependent protease complex in Escherichia coli related to the eukaryotic proteasome. Proc Natl Acad Sci U S A 93, 5808–5813.[CrossRef]
    [Google Scholar]
  27. Rohrwild, M., Pfeifer, G., Santarius, U., Muller, S. A., Huang, H.-C., Engel, A., Baumeister, W. & Goldberg, A. L. ( 1997; ). The ATP-dependent HslVU protease from Escherichia coli is a four-ring structure resembling the proteasome. Nat Struct Biol 4, 133–139.[CrossRef]
    [Google Scholar]
  28. Seemüller, E., Lupas, A., Stock, D., Löwe, J., Huber, R. & Baumeister, W. ( 1995; ). Proteasome from Thermoplasma acidophilum: a threonine protease. Science 268, 579–582.[CrossRef]
    [Google Scholar]
  29. Seong, I. S., Oh, J. Y., Yoo, S. J., Seol, J. H. & Chung, C. H. ( 1999; ). ATP-dependent degradation of SulA, a cell division inhibitor, by the HslVU protease in Escherichia coli. FEBS Lett 456, 211–214.[CrossRef]
    [Google Scholar]
  30. Seong, I. S., Oh, J. Y., Lee, J. W., Tanaka, K. & Chung, C. H. ( 2000; ). The HslU ATPase acts as a molecular chaperone in prevention of aggregation of SulA, an inhibitor of cell division in Escherichia coli. FEBS Lett 477, 224–228.[CrossRef]
    [Google Scholar]
  31. Silhavy, T. J., Berman, M. L. & Enquist, L. W. ( 1984; ). Experiments with Gene Fusions. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  32. Simons, R. W., Houman, F. & Kleckner, N. ( 1987; ). Improved single and multicopy lac-based cloning vectors for protein and operon fusions. Gene 53, 85–96.[CrossRef]
    [Google Scholar]
  33. Smith, C. K., Baker, T. A. & Sauer, R. T. ( 1999; ). Lon and Clp family proteases and chaperones share homologous substrate-recognition domains. Proc Natl Acad Sci U S A 96, 6678–6682.[CrossRef]
    [Google Scholar]
  34. Song, H. K., Hartmann, C., Ramachandran, R., Bochtler, M., Behrendt, R., Moroder, L. & Huber, R. ( 2000; ). Mutational studies on HslU and its docking mode with HslV. Proc Natl Acad Sci U S A 97, 14103–14108.[CrossRef]
    [Google Scholar]
  35. Stevenson, G., Andrianopoulos, K., Hobbs, M. & Reeves, P. R. ( 1996; ). Organization of the Escherichia coli K-12 gene cluster responsible for production of the extracellular polysaccharide colanic acid. J Bacteriol 178, 4885–4893.
    [Google Scholar]
  36. Stout, V. & Gottesman, S. ( 1990; ). RcsB and RcsC: a two-component regulator of capsule synthesis in Escherichia coli. J Bacteriol 172, 659–669.
    [Google Scholar]
  37. Stout, V., Torres-Cabassa, A., Maurizi, M. R., Gutnick, D. & Gottesman, S. ( 1991; ). RcsA, an unstable positive regulator of capsular polysaccharide synthesis. J Bacteriol 173, 1738–1747.
    [Google Scholar]
  38. Torres-Cabassa, A. S. & Gottesman, S. ( 1987; ). Capsule synthesis in Escherichia coli K-12 is regulated by proteolysis. J Bacteriol 169, 981–989.
    [Google Scholar]
  39. Trisler, P. & Gottesman, S. ( 1984; ). lon transcriptional regulation of genes necessary for capsular polysaccharide synthesis in Escherichia coli K-12. J Bacteriol 160, 184–191.
    [Google Scholar]
  40. Wawrzynow, A., Wojtkowiak, D., Marszalek, J., Banecki, B., Jonsen, M., Graves, B., Georgopoulos, C. & Zylics, M. ( 1995; ). The ClpX heat-shock protein of Escherichia coli, the ATP-dependent substrate specificity component of the ClpP-ClpX protease, is a novel molecular chaperone. EMBO J 14, 1867–1877.
    [Google Scholar]
  41. Wehland, M. & Bernhard, F. ( 2000; ). The RcsAB box: characterization of a new operator essential for the regulation of exopolysaccharide biosynthesis in enteric bacteria. J Biol Chem 275, 7013–7020.[CrossRef]
    [Google Scholar]
  42. Wickner, S., Gottesman, S., Skowyra, D., Hoskins, J., McKenney, K. & Maurizi, M. R. ( 1994; ). A molecular chaperone, ClpA, functions like DnaK and DnaJ. Proc Natl Acad Sci U S A 91, 12218–12222.[CrossRef]
    [Google Scholar]
  43. Wu, W.-F., Zhou, Y. N. & Gottesman, S. ( 1999; ). Redundant in vivo proteolytic activities of Escherichia coli Lon and the ClpYQ (HslUV) Protease. J Bacteriol 181, 3681–3687.
    [Google Scholar]
  44. Yoo, S. J., Seol, J. H., Shin, D. H., Rohrwild, M., Kang, M.-S., Tanaka, K., Goldberg, A. L. & Chung, C. H. ( 1996; ). Purification and characterization of the heat shock proteins HslV and HslU that form a new ATP-dependent protease in Escherichia coli. J Biol Chem 271, 14035–14040.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26446-0
Loading
/content/journal/micro/10.1099/mic.0.26446-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error