1887

Abstract

ClpYQ protease and Lon protease possess a redundant function for degradation of SulA, a cell division inhibitor. An experimental cue implied that the capsule synthesis activator RcsA, a known substrate of Lon, is probably a specific substrate for the ClpYQ protease. This paper shows that overexpression of ClpQ and ClpY suppresses the mucoid phenotype of a mutant. Since the () gene, involved in capsule synthesis, is activated by RcsA, the reporter construct was used to assay for -galactosidase activity and thus follow RcsA stability. The expression of was increased in double mutants of in combination with or/and mutation(s) compared with the wild-type or single mutants. Overproduction of ClpYQ or ClpQ decreased expression. Additionally, a P fusion construct showed quantitatively that an inducible RcsA activates expression. The effect of RcsA on expression was shown to be influenced by the ClpYQ activities. Moreover, a translational fusion construct showed higher activity of RcsA–LacZ in a strain than in the wild-type. By contrast, overproduction of cellular ClpYQ resulted in decreased -galactosidase levels of RcsA–LacZ. Taken together, the data indicate that ClpYQ acts as a secondary protease in degrading the Lon substrate RcsA.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26446-0
2004-02-01
2020-04-04
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/2/mic1500437.html?itemId=/content/journal/micro/10.1099/mic.0.26446-0&mimeType=html&fmt=ahah

References

  1. Blattner F. R., 14 other authors Plunkett G. III, Bloch C. A.. 1997; The complete genome sequence of Escherichia coli K-12. Science277:1453–1474[CrossRef]
    [Google Scholar]
  2. Bochtler M., Hartmann C., Song H. K., Bourenkov G. P., Bartunik H. D., Huber R. 2000; The structures of HslU and the ATP-dependent protease HslU-HslV. Nature403:800–805[CrossRef]
    [Google Scholar]
  3. Bogyo M., McMaster J. S., Gaczynska M., Tortorella D., Goldberg A. L., Ploegh H. 1997; Covalent modification of the active site threonine of proteasomal β subunits and the Escherichia coli homolog HslV by a new class of inhibitors. Proc Natl Acad Sci U S A94:6629–6634[CrossRef]
    [Google Scholar]
  4. Chuang S.-E., Burland V., Blattner F. R, Plunkett G. III, Daniels D. L.. 1993; Sequence analysis of four new heat-shock genes constituting the hslTS/ibpAB and hslVU operons in Escherichia coli . Gene134:1–6[CrossRef]
    [Google Scholar]
  5. Chung C. H., Goldberg A. L. 1981; The product of the lon ( capR ) gene in Escherichia coli is the ATP-dependent protease, protease La. Proc Natl Acad Sci U S A78:4931–4935[CrossRef]
    [Google Scholar]
  6. Chung C. T., Niemela S. L., Miller R. H. 1989; One-step preparation of competent Escherichia coli : transformation and storage of bacterial cells in the same solution. Proc Natl Acad Sci U S A86:2172–2175[CrossRef]
    [Google Scholar]
  7. Ebel W., Trempy J. E. 1999; Escherichia coli RcsA, a positive activator of colanic acid capsular polysaccharide synthesis, functions to activate its own expression. J Bacteriol181:577–584
    [Google Scholar]
  8. Goldberg A. L., Moerschell R. P., Chung C. H., Maurizi M. R. 1994; ATP-dependent protease La (lon) from Escherichia coli . Methods Enzymol244:350–375
    [Google Scholar]
  9. Gottesman S. 1996; Proteases and their targets in Escherichia coli . Annu Rev Genet30:465–506[CrossRef]
    [Google Scholar]
  10. Gottesman S., Clark W. P., Maurizi M. R, de Crecy-Lagard V.. 1993; ClpX, an alternative subunit for the ATP-dependent Clp protease of Escherichia coli . J Biol Chem268:22618–22626
    [Google Scholar]
  11. Gottesman S., Roche E., Zhou Y.-N., Sauer R. T. 1998; The ClpXP and ClpAP proteases degrade proteins with carboxy-terminal peptide tails added by the SsrA-tagging system. Genes Dev12:1338–1347[CrossRef]
    [Google Scholar]
  12. Guzman L.-M., Belin D., Carson M. J., Beckwith J. 1995; Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol177:4121–4130
    [Google Scholar]
  13. Kanemori M., Nishihara K., Yanagi H., Yura T. 1997; Synergistic roles of HslVU and other ATP-dependent proteases in controlling in vivo turnover of σ 32 and abnormal proteins in Escherichia coli . J Bacteriol179:7219–7225
    [Google Scholar]
  14. Kanemori M., Yanagi H., Yura T. 1999; The ATP-dependent HslVU/ClpQY protease participates in turnover of cell division inhibitor SulA in Escherichia coli . J Bacteriol181:3674–3680
    [Google Scholar]
  15. Katayama-Fujimura Y., Gottesman S., Maurizi M. R. 1987; A multiple-component, ATP-dependent protease from Escherichia coli . J Biol Chem262:4477–4485
    [Google Scholar]
  16. Kessel M., Wu W.-F., Gottesman S., Kocsis E., Steven A. C., Maurizi M. R. 1996; Six-fold rotational symmetry of ClpQ, the E. coli homolog of the 20S proteasome, and its ATP-dependent activator, ClpY. FEBS Lett398:274–278[CrossRef]
    [Google Scholar]
  17. Khattar M. M. 1997; Overexpression of the hslVU operon suppresses SOS-mediated inhibition of cell division in Escherichia coli . FEBS Lett414:402–404[CrossRef]
    [Google Scholar]
  18. Laemmli U. K. 1970; Cleavage of structure proteins during the assembly of the head of bacteriophage T4. Nature227:680–685[CrossRef]
    [Google Scholar]
  19. Lee Y.-Y., Chang C.-F., Kuo C.-L., Chen M.-C., Yu C. H., Lin P.-I., Wu W. F. 2003; Subunit oligomerization and substrate recognition of the Escherichia coli ClpYQ (HslUV) protease implicated by in vivo protein-protein interactions in the yeast two-hybrid system. J Bacteriol185:2393–2401[CrossRef]
    [Google Scholar]
  20. Maurizi M. R., Trisler P., Gottesman S. 1985; Insertional mutagenesis of the lon gene in Escherichia coli : lon is dispensable. J Bacteriol164:1124–1135
    [Google Scholar]
  21. Maurizi M. R., Clark W. P., Kim S.-H., Gottesman S. 1990a; ClpP represents a unique family of serine proteases. J Biol Chem265:12546–12552
    [Google Scholar]
  22. Maurizi M. R., Clark W. P., Katayama Y., Rudikoff S., Pumphrey J., Bowers B., Gottesman S. 1990b; Sequence and structure of ClpP, the proteolytic component of the ATP-dependent Clp protease of Escherichia coli . J Biol Chem265:12536–12545
    [Google Scholar]
  23. Miller J. H. 1972; Experiments in Bacterial Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  24. Missiakas D., Schwager F., Betton J. M., Georgopoulos C., Raina S. 1996; Identification and characterization of HslV HslU(ClpQ ClpY) proteins involved in overall proteolysis of misfolded proteins in Escherichia coli . EMBO J15:6899–6909
    [Google Scholar]
  25. Porankiewicz J., Wang J., Clarke A. K. 1999; New insights into the ATP-dependent Clp protease: Escherichia coli and beyond. Mol Microbiol32:449–458[CrossRef]
    [Google Scholar]
  26. Rohrwild M., Coux O., Huang H.-C., Moerschell R. P., Yoo S. J., Seol J. H., Chung C. H., Goldberg A. L. 1996; HslV-HslU: a novel ATP-dependent protease complex in Escherichia coli related to the eukaryotic proteasome. Proc Natl Acad Sci U S A93:5808–5813[CrossRef]
    [Google Scholar]
  27. Rohrwild M., Pfeifer G., Santarius U., Muller S. A., Huang H.-C., Engel A., Baumeister W., Goldberg A. L. 1997; The ATP-dependent HslVU protease from Escherichia coli is a four-ring structure resembling the proteasome. Nat Struct Biol4:133–139[CrossRef]
    [Google Scholar]
  28. Seemüller E., Lupas A., Stock D., Huber R., Baumeister W, Löwe J.. 1995; Proteasome from Thermoplasma acidophilum : a threonine protease. Science268:579–582[CrossRef]
    [Google Scholar]
  29. Seong I. S., Oh J. Y., Yoo S. J., Seol J. H., Chung C. H. 1999; ATP-dependent degradation of SulA, a cell division inhibitor, by the HslVU protease in Escherichia coli . FEBS Lett456:211–214[CrossRef]
    [Google Scholar]
  30. Seong I. S., Oh J. Y., Lee J. W., Tanaka K., Chung C. H. 2000; The HslU ATPase acts as a molecular chaperone in prevention of aggregation of SulA, an inhibitor of cell division in Escherichia coli . FEBS Lett477:224–228[CrossRef]
    [Google Scholar]
  31. Silhavy T. J., Berman M. L., Enquist L. W. 1984; Experiments with Gene Fusions Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  32. Simons R. W., Houman F., Kleckner N. 1987; Improved single and multicopy lac -based cloning vectors for protein and operon fusions. Gene53:85–96[CrossRef]
    [Google Scholar]
  33. Smith C. K., Baker T. A., Sauer R. T. 1999; Lon and Clp family proteases and chaperones share homologous substrate-recognition domains. Proc Natl Acad Sci U S A96:6678–6682[CrossRef]
    [Google Scholar]
  34. Song H. K., Hartmann C., Ramachandran R., Bochtler M., Behrendt R., Moroder L., Huber R. 2000; Mutational studies on HslU and its docking mode with HslV. Proc Natl Acad Sci U S A97:14103–14108[CrossRef]
    [Google Scholar]
  35. Stevenson G., Andrianopoulos K., Hobbs M., Reeves P. R. 1996; Organization of the Escherichia coli K-12 gene cluster responsible for production of the extracellular polysaccharide colanic acid. J Bacteriol178:4885–4893
    [Google Scholar]
  36. Stout V., Gottesman S. 1990; RcsB and RcsC: a two-component regulator of capsule synthesis in Escherichia coli . J Bacteriol172:659–669
    [Google Scholar]
  37. Stout V., Torres-Cabassa A., Maurizi M. R., Gutnick D., Gottesman S. 1991; RcsA, an unstable positive regulator of capsular polysaccharide synthesis. J Bacteriol173:1738–1747
    [Google Scholar]
  38. Torres-Cabassa A. S., Gottesman S. 1987; Capsule synthesis in Escherichia coli K-12 is regulated by proteolysis. J Bacteriol169:981–989
    [Google Scholar]
  39. Trisler P., Gottesman S. 1984; lon transcriptional regulation of genes necessary for capsular polysaccharide synthesis in Escherichia coli K-12. J Bacteriol160:184–191
    [Google Scholar]
  40. Wawrzynow A., Wojtkowiak D., Marszalek J., Banecki B., Jonsen M., Graves B., Georgopoulos C., Zylics M. 1995; The ClpX heat-shock protein of Escherichia coli , the ATP-dependent substrate specificity component of the ClpP-ClpX protease, is a novel molecular chaperone. EMBO J14:1867–1877
    [Google Scholar]
  41. Wehland M., Bernhard F. 2000; The RcsAB box: characterization of a new operator essential for the regulation of exopolysaccharide biosynthesis in enteric bacteria. J Biol Chem275:7013–7020[CrossRef]
    [Google Scholar]
  42. Wickner S., Gottesman S., Skowyra D., Hoskins J., McKenney K., Maurizi M. R. 1994; A molecular chaperone, ClpA, functions like DnaK and DnaJ. Proc Natl Acad Sci U S A91:12218–12222[CrossRef]
    [Google Scholar]
  43. Wu W.-F., Zhou Y. N., Gottesman S. 1999; Redundant in vivo proteolytic activities of Escherichia coli Lon and the ClpYQ (HslUV) Protease. J Bacteriol181:3681–3687
    [Google Scholar]
  44. Yoo S. J., Seol J. H., Shin D. H., Rohrwild M., Kang M.-S., Tanaka K., Goldberg A. L., Chung C. H. 1996; Purification and characterization of the heat shock proteins HslV and HslU that form a new ATP-dependent protease in Escherichia coli . J Biol Chem271:14035–14040[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26446-0
Loading
/content/journal/micro/10.1099/mic.0.26446-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error