Integrative, multifunctional plasmids for hypha-specific or constitutive expression of green fluorescent protein in Free

Abstract

The authors have engineered plasmid constructs for developmental and constitutive expression of yeast-enhanced green fluorescent protein (yEGFP3) in . The promoter for the hyphae-specific gene Hyphal Wall Protein 1 () conferred developmental expression of yEGFP3 in germ tubes and hyphae but not in yeasts or pseudohyphae when targeted to the (enolase) locus in single copy. The pHWP1GFP3 construct allows for the easy visualization of promoter activity in individual cells expressing true hyphae without having to prepare RNA for analysis. Constitutive expression of yEGFP was seen in all cell morphologies when the promoter was replaced with the promoter region. The use of the plasmids for expression of genes other than yEGFP3 was examined by substituting the putative () gene, a component of the cAMP signalling pathway involved in yeast to hyphae transitions, for yEGFP3. Strains overexpressing from the promoter were inhibited in germ tube formation and filamentation in both liquid and solid media, a phenotype consistent with keeping protein kinase A in its inactive form by association with Bcy1p. The plasmids are suitable for studies of germ tube induction or assessing germ tube formation by measuring yEGFP3 expression, for inducible expression of genes concomitant with germ tube formation by the promoter, for constitutive expression of genes by the promoter, and for expressing yEGFP3 using a promoter of choice.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26445-0
2003-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/10/mic1492977.html?itemId=/content/journal/micro/10.1099/mic.0.26445-0&mimeType=html&fmt=ahah

References

  1. Backen A. C., Broadbent I. D., Fetherston R. W., Rosamond J. D., Schnell N. F., Stark M. J. 2000; Evaluation of the CaMAL2 promoter for regulated expression of genes in Candida albicans . Yeast 16:1121–1129
    [Google Scholar]
  2. Bahn Y. S., Sundstrom P. 2001; CAP1 , an adenylate cyclase-associated protein gene, regulates bud-hypha transitions, filamentous growth, and cyclic AMP levels and is required for virulence of Candida albicans . J Bacteriol 183:3211–3223
    [Google Scholar]
  3. Birse C. E., Irwin M. Y., Fonzi W. A., Sypherd P. S. 1993; Cloning and characterization of ECE1 , a gene expressed in association with cell elongation of the dimorphic pathogen Candida albicans . Infect Immun 61:3648–3655
    [Google Scholar]
  4. Bloom K. S., Fitzgerald-Hayes M., Carbon J. 1983; Structural analysis and sequence organization of yeast centromeres. Cold Spring Harbor Symp Quant Biol 47:1175–1185
    [Google Scholar]
  5. Braun B. R., Johnson A. D. 2000; TUP1 , CPH1 and EFG1 make independent contributions to filamentation in Candida albicans . Genetics 155:57–67
    [Google Scholar]
  6. Braun B. R., Kadosh D., Johnson A. D. 2001; NRG1 , a repressor of filamentous growth in C. albicans , is down-regulated during filament induction. EMBO J 20:4753–4761
    [Google Scholar]
  7. Brummel M., Soll D. R. 1982; The temporal regulation of protein synthesis during synchronous bud or mycelium formation in the dimorphic yeast Candida albicans . Dev Biol 89:211–224
    [Google Scholar]
  8. Calderone R. A., Fonzi W. A. 2001; Virulence factors of Candida albicans . Trends Microbiol 9:327–335
    [Google Scholar]
  9. Castilla R., Passeron S., Cantore M. L. 1998; N -Acetyl-d-glucosamine induces germination in Candida albicans through a mechanism sensitive to inhibitors of cAMP-dependent protein kinase. Cell Signal 10:713–719
    [Google Scholar]
  10. Chalfie M., Tu Y., Euskirchen G., Ward W. W., Prasher D. C. 1994; Green fluorescent protein as a marker for gene expression. Science 263:802–805
    [Google Scholar]
  11. Chattaway F. W., Wheeler P. R., O'Reilly J. 1981; Involvement of adenosine 3′: 5′-cyclic monophosphate in the germination of blastospores of Candida albicans . J Gen Microbiol 123:233–240
    [Google Scholar]
  12. Clare J. J., Rayment F. B., Ballantine S. P., Sreekrishna K., Romanos M. A. 1991; High-level expression of tetanus toxin fragment C in Pichia pastoris strains containing multiple tandem integrations of the gene. Bio/Technology 9:455–460
    [Google Scholar]
  13. Cormack B. P., Bertram G., Egerton M., Gow N. A. R., Falkow S., Brown A. J. P. 1997; Yeast-enhanced green fluorescent protein (yEGFP): a reporter of gene expression in Candida albicans . Microbiology 143:303–311
    [Google Scholar]
  14. Davis D. A., Bruno V. M., Loza L., Filler S. G., Mitchell A. P. 2002; Candida albicans Mds3p, a conserved regulator of pH responses and virulence identified through insertional mutagenesis. Genetics 162:1573–1581
    [Google Scholar]
  15. Ernst J. F. 2000; Transcription factors in Candida albicans – environmental control of morphogenesis. Microbiology 146:1763–1774
    [Google Scholar]
  16. Fonzi W. A., Irwin M. Y. 1993; Isogenic strain construction and gene mapping in Candida albicans . Genetics 134:717–728
    [Google Scholar]
  17. Gerami-Nejad M., Berman J., Gale C. A. 2001; Cassettes for PCR-mediated construction of green, yellow, and cyan fluorescent protein fusions in Candida albicans . Yeast 18:859–864
    [Google Scholar]
  18. Gillum A. M., Tsay E. Y., Kirsch D. R. 1984; Isolation of the Candida albicans gene for orotidine-5′-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. Mol Gen Genet 198:179–182
    [Google Scholar]
  19. Kadosh D., Johnson A. D. 2001; Rfg1, a protein related to the Saccharomyces cerevisiae hypoxic regulator Rox1, controls filamentous growth and virulence in Candida albicans . Mol Cell Biol 21:2496–2505
    [Google Scholar]
  20. Kelly R. S., Miller M., Kurtz M. B. 1988; One-step gene disruption by cotransformation to isolate double auxotrophs in Candida albicans . Mol Gen Genet 214:24–31
    [Google Scholar]
  21. Kurtz M. B., Cortelyou M. W., Kirsch D. R. 1986; Integrative transformation of Candida albicans , using a cloned Candida ADE2 gene. Mol Cell Biol 6:142–149
    [Google Scholar]
  22. Lane S., Birse C., Zhou S., Matson R., Liu H. 2001a; DNA array studies demonstrate convergent regulation of virulence factors by Cph1, Cph2, and Efg1 in Candida albicans . J Biol Chem 276:48988–48996
    [Google Scholar]
  23. Lane S., Zhou S., Pan T., Dai Q., Liu H. 2001b; The basic helix-loop-helix transcription factor Cph2 regulates hyphal development in Candida albicans partly via TEC1 . Mol Cell Biol 21:6418–6428
    [Google Scholar]
  24. Li X., Zhao X., Fang Y., Jiang X., Duong T., Fan C., Huang C. C., Kain S. R. 1998; Generation of destabilized green fluorescent protein as a transcription reporter. J Biol Chem 273:34970–34975
    [Google Scholar]
  25. Liu H. 2001; Transcriptional control of dimorphism in Candida albicans . Curr Opin Microbiol 4:728–735
    [Google Scholar]
  26. Liu H., Kohler J., Fink G. R. 1994; Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog. Science 266:1723–1726
    [Google Scholar]
  27. Lo H. J., Kohler J. R., DiDomenico B., Loebenberg D., Cacciapuoti A., Fink G. R. 1997; Nonfilamentous C. albicans mutants are avirulent. Cell 90:939–949
    [Google Scholar]
  28. McClelland M., Nelson M., Raschke E. 1994; Effect of site-specific modification on restriction endonucleases and DNA modification methyltransferases. Nucleic Acids Res 22:3640–3659
    [Google Scholar]
  29. Morschhauser J., Michel S., Hacker J. 1998; Expression of a chromosomally integrated, single-copy GFP gene in Candida albicans , and its use as a reporter of gene regulation. Mol Gen Genet 257:412–420
    [Google Scholar]
  30. Murad A. M., Leng P., Straffon M. 11 other authors 2001; NRG1 represses yeast-hypha morphogenesis and hypha-specific gene expression in Candida albicans . EMBO J 20:4742–4752
    [Google Scholar]
  31. Niedenthal R. K., Riles L., Johnston M., Hegemann J. H. 1996; Green fluorescent protein as a marker for gene expression and subcellular localization in budding yeast. Yeast 12:773–786
    [Google Scholar]
  32. Niimi M. 1996; Dibutyryl cyclic AMP-enhanced germ tube formation in exponentially growing Candida albicans cells. Fungal Genet Biol 20:79–83
    [Google Scholar]
  33. Niimi M., Niimi K., Tokunaga J., Nakayama H. 1980; Changes in cyclic nucleotide levels and dimorphic transition in Candida albicans . J Bacteriol 142:1010–1014
    [Google Scholar]
  34. Portela P., Zaremberg V., Moreno S. 2001; Evaluation of in vivo activation of protein kinase A under non-dissociable conditions through the overexpression of wild-type and mutant regulatory subunits in Saccharomyces cerevisiae . Microbiology 147:1149–1159
    [Google Scholar]
  35. Postlethwait P., Sundstrom P. 1995; Genetic organization and mRNA expression of enolase genes of Candida albicans . J Bacteriol 177:1772–1779
    [Google Scholar]
  36. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor. NY: Cold Spring Habor Laboratory Press;
    [Google Scholar]
  37. Schmitt M. E., Brown T. A., Trumpower B. L. 1990; A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae . Nucleic Acids Res 18:3091–3092
    [Google Scholar]
  38. Srikantha T., Morrow B., Schroppel K., Soll D. R. 1995; The frequency of integrative transformation at phase-specific genes of Candida albicans correlates with their transcriptional state. Mol Gen Genet 246:342–352
    [Google Scholar]
  39. Srikantha T., Klapach A., Lorenz W. W., Tsai L. K., Laughlin L. A., Gorman J. A., Soll D. R. 1996; The sea pansy Renilla reniformis luciferase serves as a sensitive bioluminescent reporter for differential gene expression in Candida albicans . J Bacteriol 178:121–129
    [Google Scholar]
  40. Staab J. F., Sundstrom P. 1998; Genetic organization and sequence analysis of the hypha-specific cell wall protein gene HWP1 of Candida albicans . Yeast 14:681–686
    [Google Scholar]
  41. Staab J. F., Ferrer C. A., Sundstrom P. 1996; Developmental expression of a tandemly repeated, proline- and glutamine- rich amino acid motif on hyphal surfaces on Candida albicans . J Biol Chem 271:6298–6305
    [Google Scholar]
  42. Staab J. F., Bradway S. D., Fidel P. L., Sundstrom P. 1999; Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1. Science 283:1535–1538
    [Google Scholar]
  43. Sundstrom P., Aliaga G. R. 1994; A subset of proteins found in culture supernatants of Candida albicans includes the abundant, immunodominant, glycolytic enzyme enolase. J Infect Dis 169:452–456
    [Google Scholar]
  44. Sundstrom P., Smith D., Sypherd P. S. 1990; Sequence analysis and expression of the two genes for elongation factor 1 alpha from the dimorphic yeast Candida albicans . J Bacteriol 172:2036–2045
    [Google Scholar]
  45. Sundstrom P., Cutler J. E., Staab J. F. 2002; Reevaluation of the role of HWP1 in systemic candidiasis by use of Candida albicans strains with selectable marker URA3 targeted to the ENO1 locus. Infect Immun 70:3281–3283
    [Google Scholar]
  46. Uhl M. A., Johnson A. D. 2001; Development of Streptococcus thermophilus lacZ as a reporter gene for Candida albicans . Microbiology 147:1189–1195
    [Google Scholar]
  47. Zelada A., Castilla R., Passeron S., Cantore M. L. 1996; Reassessment of the effect of glucagon and nucleotides on Candida albicans germ tube formation. Cell Mol Biol 42:567–576
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26445-0
Loading
/content/journal/micro/10.1099/mic.0.26445-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed