1887

Abstract

contains three genes encoding MsrA-specific methionine sulfoxide reductase (Msr) activity (, and ) and an additional gene that encodes MsrB-specific Msr activity. Data presented here suggest that MsrA1 is the major contributor of the MsrA activity in . . In mutational analysis, while the total Msr activity in mutant was comparable to that of the parent, Msr activity was significantly up-regulated in the or double mutant. Assessment of substrate specificity together with increased reactivity of the cell-free protein extracts of the mutants to anti-MsrB polyclonal antibodies in Western analysis provided evidence that increased Msr activity was due to elevated synthesis of MsrB in the MsrA1 mutants. Previously, it was reported that oxacillin treatment of . cells led to induced synthesis of MsrA1 and a mutation in increased the susceptibility of the organism to HO. A mutation in the gene, however, was not significant for the bacterial oxidative stress response. In complementation assays, while the gene was unable to complement the double mutant for HO resistance, the same gene restored HO tolerance in the double mutant when placed under the control of the promoter. However, which was able to complement the oxidative stress response in mutants could not restore the tolerance of the mutants to HO when placed under the control of the promoter. Additionally, although the oxacillin minimum inhibitory concentration of the mutant was comparable to that of the wild-type parent, in shaking liquid culture, the mutant responded more efficiently to sublethal doses of oxacillin. The data suggest complex regulation of Msr proteins and a more significant physiological role for / in . .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26442-0
2003-10-01
2019-11-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/10/mic1492739.html?itemId=/content/journal/micro/10.1099/mic.0.26442-0&mimeType=html&fmt=ahah

References

  1. Abrams, W. R., Weinbaum, G., Weissbach, L., Weissbach, H. & Brot, N. ( 1981; ). Enzymatic reduction of oxidized α-1-proteinase inhibitor restores biological activity. Proc Natl Acad Sci U S A 78, 7483–7486.[CrossRef]
    [Google Scholar]
  2. Archer, G. L. ( 1998; ). Staphylococcus aureus: a well-armed pathogen. Clin Infect Dis 26, 1179–1181.[CrossRef]
    [Google Scholar]
  3. Augustin, J., Rosenstein, R., Wieland, B., Schneider, U., Schnell, N., Engelke, G., Entian, K. D. & Götz, F. ( 1992; ). Genetic analysis of epidermin biosynthetic genes and epidermin-negative mutants of Staphylococcus epidermidis. Eur J Biochem 204, 1149–1154.[CrossRef]
    [Google Scholar]
  4. Brot, N. & Weissbach, H. ( 1981; ). Chemistry and biology of Escherichia coli ribosomal protein L12. Mol Cell Biochem 36, 47–63.[CrossRef]
    [Google Scholar]
  5. Brot, N., Weissbach, L., Werth, J. & Weissbach, H. ( 1981; ). Enzymatic reduction of protein-bound methionine sulfoxide. Proc Natl Acad Sci U S A 78, 2155–2158.[CrossRef]
    [Google Scholar]
  6. Carp, H., Miller, F., Hoidal, J. R. & Janoff, A. ( 1982; ). Potential mechanism of emphysema: α1-proteinase inhibitor recovered from lungs of cigarette smokers contains oxidized methionine and has decreased elastase inhibitory capacity. Proc Natl Acad Sci U S A 79, 2041–2045.[CrossRef]
    [Google Scholar]
  7. Dhandayuthapani, S., Blaylock, M. W., Bebear, C. M., Rasmussen, W. G. & Baseman, J. B. ( 2001; ). Peptide methionine sulfoxide reductase (MsrA) is a virulence determinant in Mycoplasma genitalium. J Bacteriol 183, 5645–5650.[CrossRef]
    [Google Scholar]
  8. Gabbita, S. P., Aksenov, M. Y., Lovell, M. A. & Markesbery, W. R. ( 1999; ). Decrease in peptide methionine sulfoxide reductase in Alzheimer's disease brain. J Neurochem 73, 1660–1666.
    [Google Scholar]
  9. Garner, M. H. & Spector, A. ( 1980; ). Selective oxidation of cysteine and methionine in normal and senile cataractous lenses. Proc Natl Acad Sci U S A 77, 1274–1277.[CrossRef]
    [Google Scholar]
  10. Gustafson, J. E., Berger-Bächi, B., Strassle, A. & Wilkinson, B. J. ( 1992; ). Autolysis of methicillin-resistant and -susceptible Staphylococcus aureus. Antimicrob Agents Chemother 36, 566–572.[CrossRef]
    [Google Scholar]
  11. Hassouni, M. E., Chambost, J. P., Expert, D., Van Gijsegem, F. & Barras, F. ( 1999; ). The minimal gene set member msrA, encoding peptide methionine sulfoxide reductase, is a virulence determinant of the plant pathogen Erwinia chrysanthemi. Proc Natl Acad Sci U S A 96, 887–892.[CrossRef]
    [Google Scholar]
  12. Hoshi, T. & Heinemann, S. ( 2001; ). Regulation of cell function by methionine oxidation and reduction. J Physiol 531, 1–11.[CrossRef]
    [Google Scholar]
  13. Kreiswirth, B. N., Lofdahl, S., Betley, M. J., O'Reilly, M., Schlievert, P. M., Bergdoll, M. S. & Novick, R. P. ( 1983; ). The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage. Nature 305, 709–712.[CrossRef]
    [Google Scholar]
  14. Kryukov, G. V., Kumar, R. A., Koc, A., Sun, Z. & Gladyshev, V. N. ( 2002; ). Selenoprotein R is a zinc-containing stereo-specific methionine sulfoxide reductase. Proc Natl Acad Sci U S A 99, 4245–4250.[CrossRef]
    [Google Scholar]
  15. Kumar, R. A., Koc, A., Cerny, R. L. & Gladyshev, V. N. ( 2002; ). Reaction mechanism, evolutionary analysis, and role of zinc in Drosophila methionine-R-sulfoxide reductase. J Biol Chem 277, 37527–37535.[CrossRef]
    [Google Scholar]
  16. Levine, R. L., Moskovitz, J. & Stadtman, E. R. ( 2000; ). Oxidation of methionine in proteins: roles in antioxidant defense and cellular regulation. IUBMB Life 50, 301–307.[CrossRef]
    [Google Scholar]
  17. Mead, D. A., Szczesna-Skorupa, E. & Kemper, B. ( 1986; ). Single-stranded DNA ‘blue' T7 promoter plasmids: a versatile tandem promoter system for cloning and protein engineering. Protein Eng 1, 67–74.[CrossRef]
    [Google Scholar]
  18. Mei, J. M., Nourbakhsh, F., Ford, C. W. & Holden, D. W. ( 1997; ). Identification of Staphylococcus aureus virulence genes in a murine model of bacteraemia using signature-tagged mutagenesis. Mol Microbiol 26, 399–407.[CrossRef]
    [Google Scholar]
  19. Moskovitz, J., Berlett, B. S., Poston, J. M. & Stadtman, E. R. ( 1997; ). The yeast peptide-methionine sulfoxide reductase functions as an antioxidant in vivo. Proc Natl Acad Sci U S A 94, 9585–9589.[CrossRef]
    [Google Scholar]
  20. Moskovitz, J., Flescher, E., Berlett, B. S., Azare, J., Poston, J. M. & Stadtman, E. R. ( 1998; ). Overexpression of peptide-methionine sulfoxide reductase in Saccharomyces cerevisiae and human T cells provides them with high resistance to oxidative stress. Proc Natl Acad Sci U S A 95, 14071–14075.[CrossRef]
    [Google Scholar]
  21. Moskovitz, J., Poston, J. M., Berlett, B. S., Nosworthy, N. J., Szczepanowski, R. & Stadtman, E. R. ( 2000; ). Identification and characterization of a putative active site for peptide methionine sulfoxide reductase (MsrA) and its substrate stereospecificity. J Biol Chem 275, 14167–14172.[CrossRef]
    [Google Scholar]
  22. Moskovitz, J., Bar-Noy, S., Williams, W. M., Requena, J., Berlett, B. S. & Stadtman, E. R. ( 2001; ). Methionine sulfoxide reductase (MsrA) is a regulator of antioxidant defense and lifespan in mammals. Proc Natl Acad Sci U S A 98, 12920–12925.[CrossRef]
    [Google Scholar]
  23. Moskovitz, J., Singh, V. K., Requena, J., Wilkinson, B. J., Jayaswal, R. K. & Stadtman, E. R. ( 2002; ). Purification and characterization of methionine sulfoxide reductases from mouse and Staphylococcus aureus and their substrate stereospecificity. Biochem Biophys Res Commun 290, 62–65.[CrossRef]
    [Google Scholar]
  24. Novick, R. P. ( 1991; ). Genetic systems in staphylococci. Methods Enzymol 202, 587–636.
    [Google Scholar]
  25. Novick, R. P., Edelman, I. & Lofdahl, S. ( 1986; ). Small Staphylococcus aureus plasmids are transduced as linear multimers that are formed and resolved by replicative processes. J Mol Biol 192, 209–220.[CrossRef]
    [Google Scholar]
  26. Olry, A., Boschi-Muller, S., Marraud, M., Sanglier-Cianferani, S., Van Dorsselear, A. & Branlant, G. ( 2002; ). Characterization of the methionine sulfoxide reductase activities of PILB, a probable virulence factor from Neisseria meningitidis. J Biol Chem 277, 12016–12022.[CrossRef]
    [Google Scholar]
  27. Pfeltz, R. F., Singh, V. K., Schmidt, J. L., Batten, M. A., Baranyk, C. S., Nadakavukaren, M. J., Jayaswal, R. K. & Wilkinson, B. J. ( 2000; ). Characterization of passage-selected vancomycin-resistant Staphylococcus aureus strains of diverse parental backgrounds. Antimicrob Agents Chemother 44, 294–303.[CrossRef]
    [Google Scholar]
  28. Rodrigo, M. J., Moskovitz, J., Salamini, F. & Bartels, D. ( 2002; ). Reverse genetic approaches in plants and yeast suggest a role for novel, evolutionarily conserved, selenoprotein-related genes in oxidative stress defense. Mol Genet Genomics 267, 613–621.[CrossRef]
    [Google Scholar]
  29. Ruan, H., Tang, X. D., Chen, M. L. & 11 other authors ( 2002; ). High-quality life extension by the enzyme peptide methionine sulfoxide reductase. Proc Natl Acad Sci U S A 99, 2748–2753.[CrossRef]
    [Google Scholar]
  30. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  31. Schenk, S. & Laddaga, R. A. ( 1992; ). Improved methods for electroporation of Staphylococcus aureus. FEMS Microbiol Lett 94, 133–138.[CrossRef]
    [Google Scholar]
  32. Singh, V. K., Jayaswal, R. K. & Wilkinson, B. J. ( 2001a; ). Cell wall-active antibiotic induced proteins of Staphylococcus aureus identified using a proteomic approach. FEMS Microbiol Lett 199, 79–94.
    [Google Scholar]
  33. Singh, V. K., Moskovitz, J., Wilkinson, B. J. & Jayaswal, R. K. ( 2001b; ). Molecular characterization of a chromosomal locus in Staphylococcus aureus that contributes to oxidative defence and is highly induced by the cell-wall-active antibiotic oxacillin. Microbiology 147, 3037–3045.
    [Google Scholar]
  34. Skaar, E. P., Tobiason, D. M., Quick, J., Judd, R. C., Weissbach, H., Etienne, F., Brot, N. & Seifert, H. S. ( 2002; ). The outer membrane localization of the Neisseria gonorrhoeae MsrA/B is involved in survival against reactive oxygen species. Proc Natl Acad Sci U S A 99, 10108–10113.[CrossRef]
    [Google Scholar]
  35. Stadtman, E. R. ( 2001; ). Protein oxidation in aging and age-related diseases. Ann N Y Acad Sci 928, 22–38.
    [Google Scholar]
  36. Stadtman, E. R., Moskovitz, J., Berlett, B. S. & Levine, R. L. ( 2002; ). Cyclic oxidation and reduction of protein methionine residues is an important antioxidant mechanism. Mol Cell Biochem 234–235, 3–9.
    [Google Scholar]
  37. Sutherland, R. & Rollinson, G. N. ( 1964; ). Characteristics of methicillin resistant staphylococci. J Bacteriol 87, 887–889.
    [Google Scholar]
  38. Truscott, R. J. & Augusteyn, R. C. ( 1977; ). Oxidative changes in human lens proteins during senile nuclear cataract formation. Biochim Biophys Acta 492, 43–52.[CrossRef]
    [Google Scholar]
  39. Wizemann, T. M., Moskovitz, J., Pearce, B. J., Cundell, D., Arvidson, C. G., So, M., Weissbach, H., Brot, N. & Masure, H. R. ( 1996; ). Peptide methionine sulfoxide reductase contributes to the maintenance of adhesins in three major pathogens. Proc Natl Acad Sci U S A 93, 7985–7990.[CrossRef]
    [Google Scholar]
  40. Yanisch-Perron, C., Vieira, J. & Messing, J. ( 1985; ). Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33, 103–119.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26442-0
Loading
/content/journal/micro/10.1099/mic.0.26442-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error