1887

Abstract

A bacteriocin-producing strain was isolated from raw milk and named HJ50. Like most bacteriocins produced by lactic acid bacteria, bovicin HJ50 showed a narrow range of inhibiting activity. It was sensitive to trypsin, subtilisin and proteinase K. Bovicin HJ50 was extracted by n-propanol and purified by SP Sepharose Fast Flow, followed by Phenyl Superose and Sephadex G-50. Treatment of NCIB8166 with bovicin HJ50 revealed potassium efflux from inside the cell in a concentration-dependent manner. The molecular mass of bovicin HJ50 was determined to be 3428·3 Da. MS analysis of DTT-treated bovicin HJ50 suggested that bovicin HJ50 contains a disulfide bridge. The structural gene of bovicin HJ50 was cloned by nested PCR based on its N-terminal amino acid sequence. Sequence analysis showed that it encodes a 58 aa prepeptide consisting of an N-terminal leader sequence of 25 aa and a C-terminal propeptide domain of 33 aa. Bovicin HJ50 shows similarity to type AII lantibiotics. Chemical modification using an ethanethiol-containing reaction mixture showed that two Thr residues are modified.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26437-0
2004-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/1/mic1500103.html?itemId=/content/journal/micro/10.1099/mic.0.26437-0&mimeType=html&fmt=ahah

References

  1. Aktypis A., Kalantzopoulos G., Huis in't Veld J. H. J., ten Brink B. 1998; Purification and characterization of thermophilin T, a novel bacteriocin produced by Streptococcus thermophilus ACA-DC 0040. J Appl Microbiol 84:568–576 [CrossRef]
    [Google Scholar]
  2. Allison G. E., Klaenhammer T. R. 1999; Genetics of bacteriocins produced by lactic acid bacteria and their use in novel industrial applications. In Manual of Industrial Microbiology and Biotechnology, 2nd edn. pp. 789–808Edited by Demain A. L., Davies J. E. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  3. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254 [CrossRef]
    [Google Scholar]
  4. Cheeseman G. C., Berridge N. J. 1957; An improved method for preparing nisin. Biochem J 65:603–608
    [Google Scholar]
  5. Chen Y., Montville T. J. 1995; Efflux of ions and ATP depletion induced by pediocin PA-1 are concomitant with cell death in Listeria monocytogenes Scott A. J Appl Bacteriol 79:684–690 [CrossRef]
    [Google Scholar]
  6. Chen P., Novak J., Kirk M., Barnes S., Qi F., Caufield P. W. 1998; Structure-activity study of the lantibiotic mutacin II from Streptococcus mutans T8 by a gene replacement strategy. Appl Environ Microbiol 64:2335–2340
    [Google Scholar]
  7. Chen P., Qi F., Novak J., Krull R. E., Caufield P. W. 2001; Effect of amino acid substitutions in conserved residues in the leader peptide on biosynthesis of the lantibiotic mutacin II. FEMS Microbiol Lett 195:139–144 [CrossRef]
    [Google Scholar]
  8. de Ruyter P. G., Kuipers O. P., de Vos W. M. 1996; Controlled gene expression systems for Lactococcus lactis with the food-grade inducer nisin. Appl Environ Microbiol 62:3662–3667
    [Google Scholar]
  9. de Vos W. M., Simons G. F. M. 1994; Gene cloning and expression systems in Lactococci. In Genetics and Biotechnology of Lactic Acid Bacteria pp. 52–105Edited by Gasson M. J., de Vos W. M. Glasgow: Blackie;
    [Google Scholar]
  10. Holo H., Jeknic Z., Daeschel M., Stevanovic S., Nes I. F. 2001; Plantaricin W from Lactobacillus plantarum belongs to a new family of two-peptide lantibiotics. Microbiology 147:643–651
    [Google Scholar]
  11. Jack R. W., Tagg J. R., Ray B. 1995; Bacteriocins of Gram-positive bacteria. Microbiol Rev 59:171–200
    [Google Scholar]
  12. Klaenhammer T. R. 1993; Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev 12:39–85 [CrossRef]
    [Google Scholar]
  13. Lee S. S., Hsu J.-T., Mantovani H. C., Russell J. B. 2002; The effect of bovicin HC5, a bacteriocin from Streptococcus bovis HC5, on ruminal methane production in vitro. FEMS Microbiol Lett 217:51–55 [CrossRef]
    [Google Scholar]
  14. Lewington J., Greenaway S. D., Spillan B. J. 1987; Rapid small scale preparation of bacterial genomic DNA, suitable for cloning and hybridization analysis. Lett Appl Microbiol 5:51–53 [CrossRef]
    [Google Scholar]
  15. Mantovani H. C., Hu H., Worobo R. W., Russell J. B. 2002; Bovicin HC5, a bacteriocin from Streptococcus bovis HC5. Microbiology 148:3347–3352
    [Google Scholar]
  16. McAuliffe O., Ross R. P., Hill C. 2001; Lantibiotics: structure, biosynthesis and mode of action. FEMS Microbiol Rev 25:285–308 [CrossRef]
    [Google Scholar]
  17. Meyer H. E., Heber M., Eisermann B., Korte H., Metzger J. W., Jung G. 1994; Sequence analysis of lantibiotics: chemical derivatization procedures allow a fast access to complete Edman degradation. Anal Biochem 223:185–190 [CrossRef]
    [Google Scholar]
  18. Paik S. H., Chakicherla A., Hansen J. N. 1998; Identification and characterization of the structural and transporter genes for, and the chemical and biological properties of, sublancin 168, a novel lantibiotic produced by Bacillus subtilis 168. J Biol Chem 273:23134–23142 [CrossRef]
    [Google Scholar]
  19. Pridmore D., Rekhif N., Pittet A.-C., Suri B., Mollet B. 1996; Variacin, a new lanthionine-containing bacteriocin produced by Micrococcus varians: comparison to lacticin 481 of Lactococcus lactis. Appl Environ Microbiol 62:1799–1802
    [Google Scholar]
  20. Qi F., Chen P., Caufield P. W. 1999; Purification of mutacin III from group III Streptococcus mutans UA787 and genetic analyses of mutacin III biosynthesis genes. Appl Environ Microbiol 65:3880–3887
    [Google Scholar]
  21. Qi F., Chen P., Caufield P. W. 2000; Purification and biochemical characterization of mutacin I from the group I strain of Streptococcus mutans, CH43, and genetic analysis of mutacin I biosynthesis genes. Appl Environ Microbiol 66:3221–3229 [CrossRef]
    [Google Scholar]
  22. Qi F., Chen P., Caufield P. W. 2001; The group I strain of Streptococcus mutans, UA140, produces both the lantibiotic mutacin I and a nonlantibiotic bacteriocin, mutacin IV. Appl Environ Microbiol 67:15–21 [CrossRef]
    [Google Scholar]
  23. Rollema H. S., Kuipers O. P., Both P., de Vos W. M., Siezen R. J. 1995; Improvement of solubility and stability of the antimicrobial peptide nisin by protein engineering. Appl Environ Microbiol 61:2873–2878
    [Google Scholar]
  24. Ross K. F., Ronson C. W., Tagg J. R. 1993; Isolation and characterization of the lantibiotic salivaricin A and its structural gene salA from Streptococcus salivarius 20P3. Appl Environ Microbiol 59:2014–2021
    [Google Scholar]
  25. Sablon E., Contreras B., Vandamme E. 2000; Antimicrobial peptides of lactic acid bacteria: mode of action, genetics and biosynthesis. Adv Biochem Eng Biotechnol 68:21–60
    [Google Scholar]
  26. Sahl H.-G., Jack R. W., Bierbaum G. 1995; Biosynthesis and biological activities of lantibiotics with unique post-translational modifications. Eur J Biochem 230:827–853 [CrossRef]
    [Google Scholar]
  27. Takala T. M., Saris P. E. 2002; A food-grade cloning vector for lactic acid bacteria based on the nisin immunity gene nisI. Appl Microbiol Biotechnol 59:467–471 [CrossRef]
    [Google Scholar]
  28. ten Brink B., Minekus M., van der Vossen J. M. B. M., Leer R. J., Huis In't Veld J. H. J. 1994; Antimicrobial activity of lactobacilli: preliminary characterization and optimization of production of acidocin B, a novel bacteriocin produced by Lactobacillus acidophilus M46. J Appl Bacteriol 77:140–148 [CrossRef]
    [Google Scholar]
  29. Villani F., Aponte M., Blaiotta G., Mauriello G., Pepe O., Moschetti G. 2001; Detection and characterization of a bacteriocin, garviecin L1-5, produced by Lactococcus garvieae isolated from raw cow's milk. J Appl Microbiol 90:430–439 [CrossRef]
    [Google Scholar]
  30. Whitford M. F., McPherson M. A., Forster R. J., Teather R. M. 2001; Identification of bacteriocin-like inhibitors from rumen Streptococcus spp. and isolation and characterization of bovicin 255. Appl Environ Microbiol 67:569–574 [CrossRef]
    [Google Scholar]
  31. Woodruff W. A., Novak J., Caufield P. W. 1998; Sequence analysis of mutA and mutM genes involved in the biosynthesis of the lantibiotic mutacin II in Streptococcus mutans. Gene 206:37–43 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26437-0
Loading
/content/journal/micro/10.1099/mic.0.26437-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error