Characterization of mutants resistant to mundticin KS, a class IIa bacteriocin Free

Abstract

The emergence and spread of mutants resistant to bacteriocins would threaten the safety of using bacteriocins as food preservatives. To determine the physiological characteristics of resistant mutants, mutants of resistant to mundticin KS, a class IIa bacteriocin, were isolated. Two types of mutant were found that had different sensitivities to other antimicrobial agents such as nisin (class I) and kanamycin. Both mutants were resistant to mundticin KS even in the absence of Mg ions. The composition of unsaturated fatty acids in the resistant mutants was significantly increased in the presence of mundticin KS. The composition of the phospholipids in the two resistant mutants also differed from those in the wild-type strain. The putative zwitterionic amino-containing phospholipid in both mutants significantly increased, whereas amounts of phosphatidylglycerol and cardiolipin decreased. These changes in membrane structure may influence resistance of enterococci to class IIa and class I bacteriocins.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26435-0
2003-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/10/mic1492901.html?itemId=/content/journal/micro/10.1099/mic.0.26435-0&mimeType=html&fmt=ahah

References

  1. Bartlett G. R. 1959; Phosphorus assay in column chromatography. J Biol Chem 234:466–468
    [Google Scholar]
  2. Bligh E. G., Dyer W. G. 1959; A rapid method of total lipid extraction and purification. Can J Microbiol 37:911–917
    [Google Scholar]
  3. Bouttefroy A., Milliere J. B. 2000; Nisin-curvaticin 13 combinations for avoiding the regrowth of bacteriocin resistant cells of Listeria monocytogenes ATCC 15313. Int J Food Microbiol 62:65–75
    [Google Scholar]
  4. Chen Y., Ludescher R. D., Montville T. J. 1997a; Electrostatic interactions, but not the YGNGV consensus motif, govern the binding of pediocin PA-1 and its fragments to phospholipid vesicles. Appl Environ Microbiol 63:4770–4777
    [Google Scholar]
  5. Chen Y., Shapira R., Eisenstein M., Montville T. J. 1997b; Functional characterization of pediocin PA-1 binding to liposomes in the absence of a protein receptor and its relationship to a predicted tertiary structure. Appl Environ Microbiol 63:524–531
    [Google Scholar]
  6. Chung K., Dickson J., Crouse J. 1989; Effects of nisin on growth of bacteria attached to meat. Appl Environ Microbiol 55:1329–1333
    [Google Scholar]
  7. Crandall A. D., Montville T. J. 1998; Nisin resistance in Listeria monocytogenes ATCC 700302 is a complex phenotype. Appl Environ Microbiol 64:231–237
    [Google Scholar]
  8. Davies E. A., Adams M. R. 1994; Resistance of Listeria monocytogenes to the bacteriocin nisin. Int J Food Microbiol 21:341–347
    [Google Scholar]
  9. Davies E. A., Falahee M. B., Adams M. R. 1996; Involvement of the cell envelope of Listeria monocytogenes in the acquisition of nisin resistance. J Appl Bacteriol 81:139–146
    [Google Scholar]
  10. Eguchi T., Kaminaka K., Shima J., Kawamoto S., Mori K., Choi S. H., Doi K., Ohmomo S., Ogata S. 2001; Isolation and characterization of enterocin SE-K4 produced by thermophilic enterococci, Enterococcus faecalis K-4. Biosci Biotechnol Biochem 65:247–253
    [Google Scholar]
  11. Ennahar S., Sashihara T., Sonomoto K., Ishizaki A. 2000; Class IIa bacteriocins: biosynthesis, structure and activity. FEMS Microbiol Rev 24:85–106
    [Google Scholar]
  12. Gravesen A., Sorensen K., Aarestrup F. M., Knochel S. 2001; Spontaneous nisin-resistant Listeria monocytogenes mutants with increased expression of a putative penicillin-binding protein and their sensitivity to various antibiotics. Microb Drug Resist 7:127–135
    [Google Scholar]
  13. Gravesen A., Ramnath M., Rechinger K. B., Andersen N., Jansch L., Hechard Y., Hastings J. W., Knochel S. 2002; High-level resistance to class IIa bacteriocins is associated with one general mechanism in Listeria monocytogenes . Microbiology 148:2361–2369
    [Google Scholar]
  14. Holzapfel W. H., Geisen R., Schillinger U. 1995; Biological preservation of foods with reference to protective cultures, bacteriocins and food-grade enzymes. Int J Food Microbiol 24:343–362
    [Google Scholar]
  15. Jack R. W., Tagg J. R., Ray B. 1995; Bacteriocins of gram-positive bacteria. Microbiol Rev 59:171–200
    [Google Scholar]
  16. Kato T., Kurashige S., Chabbert Y. A., Mitsuhashi S. 1978; Determination of the ID50 values of antibacterial agents in agar. J Antibiot (Tokyo 31:1299–1303
    [Google Scholar]
  17. Kawamoto S., Shima J., Sato R., Eguchi T., Ohmomo S., Shibato J., Horikoshi N., Takeshita K., Sameshima T. 2002; Biochemical and genetic characterization of mundticin KS, an antilisterial peptide produced by Enterococcus mundtii NFRI 7393. Appl Environ Microbiol 68:3830–3840
    [Google Scholar]
  18. Klaenhammer T. R. 1988; Bacteriocins of lactic acid bacteria. Biochimie 70:337–349
    [Google Scholar]
  19. Kocun F. 1970; Amino acid containing phospholipids as major components of the phospholipids of Streptococcus faecalis IoCI . Biochim Biophys Acta 202:277–282
    [Google Scholar]
  20. Limonet M., Revol-Junelles A. M., Milliere J. B. 2002; Variations in the membrane fatty acid composition of resistant or susceptible Leuconostoc or Weissella strains in the presence or absence of Mesenterocin 52A and Mesenterocin 52B produced by Leuconostoc mesenteroides subsp. mesenteroides FR52. Appl Environ Microbiol 68:2910–2916
    [Google Scholar]
  21. Mantovani H. C., Russell J. B. 2001; Nisin resistance of Streptococcus bovis . Appl Environ Microbiol 67:808–813
    [Google Scholar]
  22. Mazzotta A. S., Montville T. J. 1997; Nisin induces changes in membrane fatty acid composition of Listeria monocytogenes nisin-resistant strains at 10 °C and 30 °C. J Appl Microbiol 82:32–38
    [Google Scholar]
  23. Montville T. J., Chen Y. 1998; Mechanistic action of pediocin and nisin: recent progress and unresolved questions. Appl Microbiol Biotechnol 50:511–519
    [Google Scholar]
  24. Song H. J., Richard J. 1997; Antilisterial activity of three bacteriocins used at sub minimal inhibitory concentrations and cross-resistance of the survivors. Int J Food Microbiol 36:155–161
    [Google Scholar]
  25. Vadyvaloo V., Hastings J. W., Van Der Merwe M. J., Rautenbach M. 2002; Membranes of Class IIa bacteriocin-resistant Listeria monocytogenes cells contain increased levels of desaturated and short-acyl-chain phosphatidylglycerols. Appl Environ Microbiol 68:5223–5230
    [Google Scholar]
  26. Verheul A., Russell N. J., Van T. H. R., Rombouts F. M., Abee T. 1997; Modifications of membrane phospholipid composition in nisin-resistant Listeria monocytogenes Scott A. Appl Environ Microbiol 63:3451–3457
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26435-0
Loading
/content/journal/micro/10.1099/mic.0.26435-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed