1887

Abstract

The molecular events following inhibition of bacterial peptidoglycan synthesis have not been studied extensively. Previous proteomic studies have revealed that certain proteins are produced in increased amounts upon challenge of with cell-wall-active antibiotics. In an effort to further those studies, the genes upregulated in their expression in response to cell-wall-active antibiotics have been identified by genome-wide transcriptional profiling using custom-made Affymetrix GeneChips. A large number of genes, including ones encoding proteins involved in cell-wall metabolism (including , , and ) and stress responses (including , , and ), were upregulated by oxacillin, -cycloserine or bacitracin. This response may represent the transcriptional signature of a cell-wall stimulon induced in response to cell-wall-active agents. The findings imply that treatment with cell-wall-active antibiotics results in damage to proteins including oxidative damage. Additional genes in a variety of functional categories were upregulated uniquely by each of the three cell-wall-active antibiotics studied. These changes in gene expression can be viewed as an attempt by the organism to defend itself against the antibacterial activities of the agents.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26426-0
2003-10-01
2020-08-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/10/mic1492719.html?itemId=/content/journal/micro/10.1099/mic.0.26426-0&mimeType=html&fmt=ahah

References

  1. Anon 2002; Staphylococcus aureus resistant to vancomycin – United States, 2002. MMWR Morb Mortal Wkly Rep51:565–567
    [Google Scholar]
  2. Baba T. F., Takeuchi F., Kuroda M.. 11 other authors 2002; Genome and virulence determinants of high virulence community-acquired MRSA. Lancet359:1819–1827
    [Google Scholar]
  3. Boyle-Vavra S., Yin S., Challapalli M., Daum R. S.. 2003; Transcriptional induction of the penicillin-binding protein 2 gene in Staphylococcus aureus by cell wall-active antibiotics oxacillin and vancomycin. Antimicrob Agents Chemother47:1028–1036
    [Google Scholar]
  4. Brandenberger M., Tschierske M., Giachino P., Wada A., Berger-Bächi B.. 2000; Inactivation of a novel three-cistronic operon tcaRtcaAtcaB increases teicoplanin resistance in Staphylococcus aureus Biochim Biophys Acta;1523135–139
    [Google Scholar]
  5. Brunskill E. W., Bayles K. W.. 1996; Identification and molecular characterization of a putative regulatory locus that affects autolysis in Staphylococcus aureus . J Bacteriol178:611–618
    [Google Scholar]
  6. Cao M., Wang T., Ye R., Helman J. D.. 2002; Antibiotics that inhibit cell wall biosynthesis induce expression of the Bacillus subtilis σ w and σ m regulons. Mol Microbiol45:1267–1276
    [Google Scholar]
  7. Chambers H. F.. 1997; Methicillin resistance in staphylococci: molecular and biochemical basis and clinical implications. Clin Microbiol Rev10:781–791
    [Google Scholar]
  8. Chan P. F., Gagnon R., Lonetto M., Javed R., Boyle R., O'Brien S., Lunsford D., Jaworski D.. 2003; Microarray identification of genes responsive to cell wall inhibitors in Staphylococcus aureus . In Abstracts of the 103rd General Meeting of the American Society for Microbiology 2003 , abstract A165 Washington, DC: American Society for Microbiology;
    [Google Scholar]
  9. Cheung A. L., Chien Y. T., Bayer A. S.. 1999; Hyperproduction of alpha-hemolysin in a sigB mutant is associated with elevated SarA expression in Staphylococcus aureus . Infect Immun67:1331–1337
    [Google Scholar]
  10. Conway T., Schoolnick G. K.. 2003; Microarray expression profiling: capturing a genome-wide portrait of the transcriptome. Mol Microbiol47:879–889
    [Google Scholar]
  11. Dunman P. M., Murphy E., Haney S.. 7 other authors 2001; Transcription profiling-based identification of Staphylococcus aureus genes regulated by the agr and/or sarA loci. J Bacteriol183:7341–7353
    [Google Scholar]
  12. Gale E. F., Cundliffe E., Reynolds P. E., Richmond M. H., Waring M. T.. 1982; The Molecular Basis of Antibiotic Action , 2nd edn. London: Wiley;
    [Google Scholar]
  13. Gertz S., Engelmann S., Schmid R., Ziebandt A.-K., Tischer K., Scharf C., Hacker J., Hecker M.. 2000; Characterization of the σ B regulon in Staphylococcus aureus . J Bacteriol182:6983–6991
    [Google Scholar]
  14. Giachino P., Engelmann S., Bischoff M.. 2001; σ B activity depends on RsbU in Staphylococcus aureus . J Bacteriol183:1843–1852
    [Google Scholar]
  15. Goh E.-B., Kim G., Tsui W., McClure J., Surette M. G., Davies J.. 2002; Transcriptional modulation of bacterial gene expression by subinhibitory concentrations of antibiotics. Proc Natl Acad Sci U S A99:17025–17030
    [Google Scholar]
  16. Graf P. C., Jakob U.. 2002; Redox-regulated molecular chaperones. Cell Mol Life Sci59:1624–1631
    [Google Scholar]
  17. Groicher K. H., Firek B. A., Fujimoto D. F., Bayles K. W.. 2000; The Staphylococcus aureus lrgAB operon modulates murein hydrolase activity and penicillin tolerance. J Bacteriol182:1794–1801
    [Google Scholar]
  18. Hanaki H., Kuwahara-Arai K., Boyle-Vavra S., Daum R. S., Labischinski H., Hiramatsu K.. 1998; Activated cell-wall synthesis is associated with vancomycin resistance in methicillin-resistant Staphylococcus aureus clinical strains Mu3 and Mu50. J Antimicrob Chemother42:199–209
    [Google Scholar]
  19. Helmann J. D.. 2002; The extracytoplasmic function (ECF) sigma factors. Adv Microb Physiol46:47–110
    [Google Scholar]
  20. Hiramatsu K., Okuma K., Ma X. X., Yamamoto M., Hori S., Kapi M.. 2002; New trends in Staphylococcus aureus infections: glycopeptide resistance in hospital and methicillin resistance in the community. Curr Opin Infect Dis15:407–413
    [Google Scholar]
  21. Hong H. J., Paget M. S. B., Buttner M. J.. 2002; A signal transduction system in Streptomyces coelicolor that activates the expression of a putative cell wall glycan operon in response to vancomycin and other cell wall-specific antibiotics. Mol Microbiol44:1199–1211
    [Google Scholar]
  22. Horsburgh M. J., Aish J. L., White I. J., Shaw L., Lithgow J. K., Foster S. J.. 2002; σ B modulates virulence determinant expression and stress resistance: characterization of a functional rsbU strain derived from Staphylococcus aureus 8325-4. J Bacteriol184:5457–5467
    [Google Scholar]
  23. Jablonski P. E., Mychajlonka M.. 1988; Oxacillin-induced inhibition of protein and RNA synthesis in a tolerant Staphylococcus aureus isolate. J Bacteriol170:1831–1836
    [Google Scholar]
  24. Jakob U., Muse W., Eser M., Bardwell J. C.. 1999; Chaperone activity with a redox switch. Cell96:341–352
    [Google Scholar]
  25. Komatsuzawa H., Sugai M., Ohta K., Fujiwara T., Nakashima S., Suzuki J., Lee C. Y., Suginaka H.. 1997; Cloning and characterization of the fmt gene which affects the methicillin resistance level and autolysis in the presence of Triton X-100 in methicillin-resistant Staphylococcus aureus . Antimicrob Agents Chemother41:2355–2361
    [Google Scholar]
  26. Kuroda M., Kuwahara-Arai K., Hiramatsu K.. 2000; Identification of the up- and down-regulated genes in vancomycin-resistant Staphylococcus aureus strains Mu3 and Mu50 by cDNA differential hybridization method. Biochem Biophys Res Commun269:485–490
    [Google Scholar]
  27. Kuroda M., Ohta T., Uchiyama I.. 34 other authors 2001; Whole genome sequence of methicillin-resistant Staphylococcus aureus . Lancet357:1225–1240
    [Google Scholar]
  28. Marquardt J. L., Siegele D. A., Kolter R., Walsh C. T.. 1992; Cloning and sequencing of Escherichia coli murZ and purification of its product, a UDP- N -acetylglucosamine enolpyruvyl transferase. J Bacteriol174:5748–5752
    [Google Scholar]
  29. Moreira B., Boyle-Vavra S., deJonge B. L., Daum R. S.. 1997; Increased production of penicillin-binding protein 2, increased detection of other penicillin-binding proteins, and decreased coagulase activity associated with glycopeptide resistance in Staphylococcus aureus . Antimicrob Agents Chemother41:1788–1793
    [Google Scholar]
  30. Murakami H., Matsumaru H., Kanamori M., Hayashi H., Ohta T.. 1999; Cell wall-affecting antibiotics induce expression of a novel gene, drp35 , in Staphylococcus aureus . Biochem Biophys Res Commun264:348–351
    [Google Scholar]
  31. Mychajlonka M., McDowell T. D., Shockman G. D.. 1980; Inhibition of peptidoglycan, ribonucleic acid, and protein synthesis in tolerant strains of Streptococcus mutans . Antimicrob Agents Chemother17:572–582
    [Google Scholar]
  32. Ng W.-L., Kazmierczak K. M., Robertson G. T., Gilmour R., Winkler M. E.. 2003; Transcriptional regulation and signature patterns revealed by microarray analyses of Streptococcus pneumoniae R6 challenged with sublethal concentrations of translation inhibitors. J Bacteriol185:359–370
    [Google Scholar]
  33. Novick R. P.. 1991; Genetic systems in staphylococci. Methods Enzymol204:587–636
    [Google Scholar]
  34. Pallen M. J., Wren B. W.. 1997; The HtrA family of serine proteases. Mol Microbiol26:209–221
    [Google Scholar]
  35. Pinho M. G., de Lencastre H., Tomasz A.. 2001; An acquired and a native penicillin-binding protein cooperate in building the cell wall of drug-resistant staphylococci. Proc Natl Acad Sci U S A98:10886–10891
    [Google Scholar]
  36. Raivio T. L., Silhavy T. J.. 2000; Sensing and responding to envelope stress. In Bacterial Stress Responses pp 19–32 Edited by Storz G., Henge-Aronis R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  37. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  38. Singh V. K., Jayaswal R. K., Wilkinson B. J.. 2001a; Cell wall-active antibiotic induced proteins of Staphylococcus aureus identified by using a proteomic approach. FEMS Microbiol Lett199:79–84
    [Google Scholar]
  39. Singh V. K., Moskovitz J., Wilkinson B. J., Jayaswal R. K.. 2001b; Molecular characterization of a chromosomal locus in Staphylococcus aureus that contributes to oxidative defence and its highly induced by the cell-wall-active antibiotic oxacillin. Microbiology147:3037–3045
    [Google Scholar]
  40. Smith I. M., Vickers A. B.. 1960; Natural history of 338 treated and untreated patients with staphylococcal septicaemia (1936–1955. Lancet1:1318–1322
    [Google Scholar]
  41. Smith M. W., Neidhardt F. C.. 1983; Proteins induced by anaerobiosis in Escherichia coli . J Bacteriol154:344–350
    [Google Scholar]
  42. Storz G., Zheng M.. 2000; Oxidative stress. In Bacterial Stress Responses pp 47–59 Edited by Storz G., Henge-Aronis R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  43. VanBogelen R. A., Schiller E. E., Thomas J. D., Neidhardt F. C.. 1999; Diagnosis of cellular states of microbial organisms using proteomics. Electrophoresis20:2149–2159
    [Google Scholar]
  44. Wahlström E., Vitikainen M., Kontinen V. P., Sarvas M.. 2003; The extracytoplasmic folding factor PrsA is required for protein secretion only in the presence of the cell wall in Bacillus subtilis . Microbiology149:569–577
    [Google Scholar]
  45. Walsh C.. 2003; Antibiotics, Actions, Origins, Resistance Washington, DC: American Society for Microbiology;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26426-0
Loading
/content/journal/micro/10.1099/mic.0.26426-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error