1887

Abstract

To study the periplasmic branch of iron (ferric ion) uptake systems in Gram-negative bacteria, genetic reconstitution experiments were initiated in involving exchange of the periplasmic iron-binding protein. The expression of many of the heterologous periplasmic ferric-binding proteins (FbpAs) was quite limited. Transformation experiments with the gene from yielded two colony sizes with different phenotypic characteristics. The small colonies contained the intact gene and were deficient in utilization of transferrin iron. The large colonies contained hybrid / genes, were proficient in transferrin iron utilization and had enhanced levels of expression of FbpA. These hybrid genes included several that encoded the mature FbpA with the signal peptide. To more fully evaluate the effect of foreign signal peptides, a series of hybrid genes were prepared that exchanged the signal peptides from FbpA, FbpA and the TEM-1 -lactamase. The presence of the leader was required for functional expression of FbpAs and was shown to dramatically increase the level of -lactamase activity.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26411-0
2003-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/11/mic1493155.html?itemId=/content/journal/micro/10.1099/mic.0.26411-0&mimeType=html&fmt=ahah

References

  1. Adhikari P., Kirby S. D., Nowalk A. J., Veraldi K. L., Schryvers A. B., Mietzner T. A. 1995; Biochemical characterization of a Haemophilus influenzae periplasmic iron transport operon. J Biol Chem 42:25142–25149
    [Google Scholar]
  2. Adhikari P., Berish S. A., Nowalk A. J., Veraldi K. L., Morse S. A., Mietzner T. A. 1996; The fbpABC locus of Neisseria gonorrhoeae functions in the periplasm-to-cytosol transport of iron. J Bacteriol 178:2145–2149
    [Google Scholar]
  3. Akita M., Sasaki S., Matsuyama S., Mizushima S. 1990; SecA interacts with secretory proteins by recognizing the positive charge at the amino terminus of the signal peptide in Escherichia coli. J Biol Chem 265:8164–8169
    [Google Scholar]
  4. Angerer A., Gaisser S., Braun V. 1990; Nucleotide sequences of the sfuA, sfuB, and sfuC genes of Serratia marcescens suggest a periplasmic-binding-protein-dependent iron transport mechanism. J Bacteriol 172:572–578
    [Google Scholar]
  5. Barcak G. J., Chandler M. S., Redfield R. J., Tomb J.-F. 1991; Genetic systems in Haemophilus influenzae. Methods Enzymol 204:321–342
    [Google Scholar]
  6. Barkocy-Gallagher G. A., Cannon J. G., Bassford P. J. Jr 1994; Beta-turn formation in the processing region is important for efficient maturation of Escherichia coli maltose-binding protein by signal peptidase I in vivo. J Biol Chem 269:13609–13613
    [Google Scholar]
  7. Bruns C. M., Norwalk A. J., Avrai A. S., McTigue M. A., Vaughan K. A., Mietzner T. A., McRee D. E. 1997; Structure of Haemophilus influenzae Fe3+-binding protein reveals convergent evolution within a superfamily. Nat Struct Biol 4:919–924
    [Google Scholar]
  8. Chin N., Frey J., Chang C. F., Chang Y. F. 1996; Identification of a locus involved in the utilization of iron by Actinobacillus pleuropneumoniae. FEMS Microbiology Lett 143:1–6
    [Google Scholar]
  9. Danese P. N., Silhavy T. J. 1998; Targeting and assembly of periplasmic and outer-membrane proteins in Escherichia coli. Annu Rev Genet 32:59–94
    [Google Scholar]
  10. Doige C., Ames G.-L. 1993; ATP-dependent transport in bacteria and humans: relevance to cystic fibrosis and multidrug resistance. Annu Rev Microbiol 47:291–319
    [Google Scholar]
  11. Gong S., Bearden S. W., Geoffroy V. A., Fetherston J. D., Perry R. D. 2001; Characterization of the Yersinia pestis Yfu ABC inorganic iron transport system. Infect Immun 69:2829–2837
    [Google Scholar]
  12. Gray-Owen S. D., Schryvers A. B. 1996; Bacterial transferrin and lactoferrin receptors. Trends Microbiol 4:185–191
    [Google Scholar]
  13. Jarosik G. P., Maciver I., Hansen E. J. 1995; Utilization of transferrin-bound iron by Haemophilus influenzae requires an intact tonB gene. Infect Immun 63:710–713
    [Google Scholar]
  14. Khun H. H., Kirby S. D., Lee B. C. 1998; A Neisseria meningitidis fbpABC mutant is incapable of using nonheme iron for growth. Infect Immun 66:2330–2336
    [Google Scholar]
  15. Kirby S. D., Gray-Owen S. D., Schryvers A. B. 1997; Characterization of a ferric binding protein mutant in Haemophilus influenzae. Mol Microbiol 25:979–987
    [Google Scholar]
  16. Kirby S. D., Lainson F. A., Donachie W., Okabe A., Tokuda M., Hatase O., Schryvers A. B. 1998; The Pasteurella haemolytica 35 kDa iron regulated protein is an FbpA homologue. Microbiology 144:3425–3436
    [Google Scholar]
  17. O'Callaghan C. H., Morris A., Kirby S. M., Shingler A. H. 1972; Novel method for detection of beta-lactamases by using a chromogenic cephalosporin substrate. Antimicrob Agents Chemother 1:283–288
    [Google Scholar]
  18. Paetzel M., Dalbey R. E., Strynadka N. C. 1998; Crystal structure of a bacterial signal peptidase in complex with a beta-lactam inhibitor. Nature 396:186–190
    [Google Scholar]
  19. Postle K. 1993; TonB protein and energy transduction between membranes. J Bioenerg Biomembr 25:591–601
    [Google Scholar]
  20. Ratledge C., Dover L. G. 2000; Iron metabolism in pathogenic bacteria. Annu Rev Microbiol 54:881–941
    [Google Scholar]
  21. Stathopoulos C., Hendrixson D. R., Thanassi D. G., Hultgren S. J., St Geme J. W. 3rd, Curtiss R. 3rd 2000; Secretion of virulence determinants by the general secretory pathway in gram-negative pathogens: an evolving story. Microbes Infect 2:1061–1072
    [Google Scholar]
  22. Stojiljkovic I., Srinivasan N. 1997; Neisseria meningitidis tonB, exbB, and exbD genes: Ton-dependent utilization of protein-bound iron in Neisseriae. J Bacteriol 179:805–812
    [Google Scholar]
  23. Swidersky U. E., Hoffschulte H. K., Muller M. 1990; Determinants of membrane-targeting and transmembrane translocation during bacterial protein export. EMBO J 9:1777–1785
    [Google Scholar]
  24. von Heijne G. 1990; The signal peptide. J Membr Biol 115:195–201
    [Google Scholar]
  25. Zimmermann L., Angerer A., Braun V. 1989; Mechanistically novel iron(III) transport system in Serratia marcescens. J Bacteriol 171:238–243
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26411-0
Loading
/content/journal/micro/10.1099/mic.0.26411-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error