The colicin G, H and X determinants encode microcins M and H47, which might utilize the catecholate siderophore receptors FepA, Cir, Fiu and IroN Free

Abstract

The colicin G producer CA46, the colicin H producer CA58 and Nissle 1917 (DSM 6601) were shown to produce microcin H47 and the newly described microcin M. Both microcins were exported like colicin V by an RND-type export system, including TolC. The gene cluster encoding microcins H47 and M in strains CA46 and CA58 is nearly identical to that in strain DSM 6601, except that two additional genes are included. A Fur box identified in front of the microcin-encoding genes explained the observed iron regulation of microcin production. The catecholate siderophore receptors Fiu, Cir and FepA from and IroN, Cir and FepA from were identified as receptors for microcins M, H47 and E492. IroN takes up the glucose-containing catecholate siderophore salmochelin, whose synthesis is encoded in the gene cluster found in and certain, often uropathogenic, strains. A gene in this cluster, , which encodes a putative glycosyltransferase, was also found in the microcin H47/M and microcin E492 gene clusters. These microcins could aid the producing strain in competing against enterobacteria that utilize catecholate siderophores.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26396-0
2003-09-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/9/mic1492557.html?itemId=/content/journal/micro/10.1099/mic.0.26396-0&mimeType=html&fmt=ahah

References

  1. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. (editors) 1996 Current Protocols in Molecular Biology New York: Green Publishing & Wiley Interscience;
  2. Azpiroz M. F., Rodriguez E., Lavina M. 2001; The structure, function, and origin of the microcin H47 ATP-binding cassette exporter indicate its relatedness to that of colicin V. Antimicrob Agents Chemother 45:969–972
    [Google Scholar]
  3. Baquero F., Bouanchaud D., Martinez-Perez M. C., Fernandez C. 1978; Microcin plasmids: a group of extrachromosomal elements coding for low-molecular-weight antibiotics in Escherichia coli . J Bacteriol 135:342–347
    [Google Scholar]
  4. Bäumler A. J., Hantke K. 1992; Ferrioxamine uptake in Yersinia enterocolitica : characterization of the receptor protein FoxA. Mol Microbiol 6:1309–1321
    [Google Scholar]
  5. Bäumler A. J., Tsolis R. M., van der Velden A. W., Stojiljkovic I., Anic S., Heffron F. 1996; Identification of a new iron regulated locus of Salmonella typhi . Gene 183:207–213
    [Google Scholar]
  6. Bäumler A. J., Norris T. L., Lasco T., Voight W., Reissbrodt R., Rabsch W., Heffron F. 1998; IroN, a novel outer membrane siderophore receptor characteristic of Salmonella enterica . J Bacteriol 180:1446–1453
    [Google Scholar]
  7. Blum G., Marre R., Hacker J. 1995; Properties of Escherichia coli strains of serotype O6. Infection 23:234–236
    [Google Scholar]
  8. Boyer A. E., Tai P. C. 1998; Characterization of the cvaA and cvi promoters of the colicin V export system: iron-dependent transcription of cvaA is modulated by downstream sequences. J Bacteriol 180:1662–1672
    [Google Scholar]
  9. Bradley D. E. 1991; Colicins G and H and their host strains. Can J Microbiol 37:751–757
    [Google Scholar]
  10. Braun V., Hantke K., Köster W. 1998; Bacterial iron transport: mechanisms, genetics, and regulation. Metal Ions Biol Syst 35:67–145
    [Google Scholar]
  11. Braun V., Patzer S. I., Hantke K. 2002; TonB dependent colicins and microcins: modular design and evolution. Biochimie 84:365–380
    [Google Scholar]
  12. Casadaban M. J., Cohen S. N. 1979; Lactose genes fused to exogenous promoters in one step using a Mu lac bacteriophage: in vitro probe for transcriptional control sequences. Proc Natl Acad Sci U S A 76:4530–4533
    [Google Scholar]
  13. Chehade H., Braun V. 1988; Iron-regulated synthesis and uptake of colicin V. FEMS Microbiol Lett 52:177–182
    [Google Scholar]
  14. Curtis N. A., Eisenstadt R. L., East S. J., Cornford R. J., Walker L. A., White A. J. 1988; Iron-regulated outer membrane proteins of Escherichia coli K-12 and mechanism of action of catechol-substituted cephalosporins. Antimicrob Agents Chemother 32:1879–1886
    [Google Scholar]
  15. Davies J. K., Reeves P. 1975; Genetics of resistance to colicins in Escherichia coli K-12: cross-resistance among colicins of group B. J Bacteriol 123:96–101
    [Google Scholar]
  16. De Lorenzo V., Wee S., Herrero M., Neilands J. B. 1987; Operator sequences of the aerobactin operon of plasmid ColV-K30 binding the ferric uptake regulation ( fur ) repressor. J Bacteriol 169:2624–2630
    [Google Scholar]
  17. Dobrindt U., Blum-Oehler G., Hartsch T., Gottschalk G., Ron E. Z., Fünfstück R., Hacker J. 2001; S-Fimbria-encoding determinant sfa (I) is located on pathogenicity island III(536) of uropathogenic Escherichia coli strain 536. Infect Immun 69:4248–4256
    [Google Scholar]
  18. Earhart C. F. others 1996; Uptake and metabolism of iron and molybdenum. In Escherichia coli and Salmonella typhimurium pp 1075–1090 Edited by Neidhardt F. C. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  19. Fath M. J., Mahanty H. K., Kolter R. 1989; Characterization of a purF operon mutation which affects colicin V production. J Bacteriol 171:3158–3161
    [Google Scholar]
  20. Fredericq P. 1948; Actions antibiotiques reciproques chez les Enterobacteriaceae . Rev Belge Pathol Exp Med 19 suppl 4:1–107
    [Google Scholar]
  21. Genilloud O., Garrido M. C., Moreno F. 1984; The transposon Tn 5 carries a bleomycin-resistance determinant. Gene 32:225–233
    [Google Scholar]
  22. Gilson L., Mahanty H. K., Kolter R. 1990; Genetic analysis of an MDR-like export system: the secretion of colicin V. EMBO J 9:3875–3894
    [Google Scholar]
  23. Gross R., Engelbrecht F., Braun V. 1984; Genetic and biochemical characterization of the aerobactin synthesis operon pColV. Mol Gen Genet 196:74–80
    [Google Scholar]
  24. Haag H., Hantke K., Drechsel H., Stojiljkovic I., Jung G., Zähner H. 1993; Purification of yersiniabactin: a siderophore and possible virulence factor of Yersinia enterocolitica . J Gen Microbiol 139:2159–2165
    [Google Scholar]
  25. Hantke K. 1983; Identification of an iron uptake system specific for coprogen and rhodotorulic acid in Escherichia coli K-12. Mol Gen Genet 191:301–306
    [Google Scholar]
  26. Hantke K. 1990; Dihydroxybenzoylserine – a siderophore for E. coli . FEMS Microbiol Lett 67:5–8
    [Google Scholar]
  27. Hantke K., Nicholson G., Rabsch W., Winkelmann G. 2003; Salmochelins, new siderophores of Salmonella enterica and uropathogenic Escherichia coli strains, are recognized by the outer membrane receptor IroN. Proc Natl Acad Sci U S A 100:3677–3682
    [Google Scholar]
  28. Havarstein L. S., Diep D. B., Nes I. F. 1995; A family of bacteriocin ABC transporters carry out proteolytic processing of their substrates concomitant with export. Mol Microbiol 16:229–240
    [Google Scholar]
  29. Killmann H., Braun M., Herrmann C., Braun V. 2001; FhuA barrel-cork hybrids are active transporters and receptors. J Bacteriol 183:3476–3487
    [Google Scholar]
  30. Koronakis V., Sharff A., Koronakis E., Luisi B., Hughes C. 2000; Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature 405:914–919
    [Google Scholar]
  31. Kruis W., Schutz E., Fric P., Fixa B., Judmaier G., Stolte M. 1997; Double-blind comparison of an oral Escherichia coli preparation and mesalazine in maintaining remission of ulcerative colitis. Aliment Pharmacol Ther 11:853–858
    [Google Scholar]
  32. Lagos R., Villanueva J. E., Monasterio O. 1999; Identification and properties of the genes encoding microcin E492 and its immunity protein. J Bacteriol 181:212–217
    [Google Scholar]
  33. Lagos R., Baeza M., Corsini G., Hetz C., Strahsburger E., Castillo J. A., Vergara C., Monasterio O. 2001; Structure, organization and characterization of the gene cluster involved in the production of microcin E492, a channel-forming bacteriocin. Mol Microbiol 42:229–243
    [Google Scholar]
  34. Lavina M., Gaggero C., Moreno F. 1990; Microcin H47, a chromosome-encoded microcin antibiotic of Escherichia coli . J Bacteriol 172:6585–6588
    [Google Scholar]
  35. Lodinova-Zadnikova R., Sonnenborn U., Tlaskalova H. 1998; Probiotics and E. coli infections in man. Vet Q 20 :Suppl 3S78–S81
    [Google Scholar]
  36. Malchow H. A. 1997; Crohn's disease and Escherichia coli . A new approach in therapy to maintain remission of colonic Crohn's disease?. J Clin Gastroenterol 25:653–658
    [Google Scholar]
  37. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  38. Miyama A., Ozaki M., Amano T. 1961; Double colicinogenicity of Escherichia coli K235. Biken J 4:1–11
    [Google Scholar]
  39. Moss J. E., Cardozo T. J., Zychlinsky A., Groisman E. A. 1999; The selC -associated SHI-2 pathogenicity island of Shigella flexneri . Mol Microbiol 33:74–83
    [Google Scholar]
  40. Nissle A. 1925; Weiteres über Grundlagen und Praxis der Mutaflorbehandlung. Dtsch Med Wochenschr 44:1809–1813
    [Google Scholar]
  41. Papavassiliou J. 1959; Production of colicins in Simmons's citrate agar. Nature 184:1339–1340
    [Google Scholar]
  42. Papavassiliou J. 1961; Biological characteristics of colicin X. Nature 190:110
    [Google Scholar]
  43. Patzer S. I., Hantke K. 1998; The ZnuABC high-affinity zinc uptake system and its regulator Zur in Escherichia coli . Mol Microbiol 28:1199–1210
    [Google Scholar]
  44. Patzer S. I., Hantke K. 1999; SufS is a NifS-like protein, and SufD is necessary for stability of the [2Fe-2S] FhuF protein in Escherichia coli . J Bacteriol 181:3307–3309
    [Google Scholar]
  45. Patzer S. I., Hantke K. 2001; Dual repression by Fe2+-Fur and Mn2+-MntR of the mntH gene, encoding an NRAMP-like Mn2+ transporter in Escherichia coli . J Bacteriol 183:4806–4813
    [Google Scholar]
  46. Portrait V., Gendron-Gaillard S., Cottenceau G., Pons A. M. 1999; Inhibition of pathogenic Salmonella enteritidis growth mediated by Escherichia coli microcin J25 producing strains. Can J Microbiol 45:988–994
    [Google Scholar]
  47. Pugsley A. P., Reeves P. 1976; Characterization of group B colicin-resistant mutants of Escherichia coli K-12: colicin resistance and the role of enterochelin. J Bacteriol 127:218–228
    [Google Scholar]
  48. Pugsley A. P., Moreno F., De Lorenzo V. 1986; Microcin-E492-insensitive mutants of Escherichia coli K12. J Gen Microbiol 132:3253–3259
    [Google Scholar]
  49. Rabsch W., Voigt W., Reissbrodt R., Tsolis R. M., Bäumler A. J. 1999; Salmonella typhimurium IroN and FepA proteins mediate uptake of enterobactin but differ in their specificity for other siderophores. J Bacteriol 181:3610–3612
    [Google Scholar]
  50. Rembacken B. J., Snelling A. M., Hawkey P. M., Chalmers D. M., Axon A. T. 1999; Non-pathogenic Escherichia coli versus mesalazine for the treatment of ulcerative colitis: a randomised trial. Lancet 354:635–639
    [Google Scholar]
  51. Rodriguez E., Lavina M. 1998; Genetic analysis of microcin H47 immunity. Can J Microbiol 44:692–697
    [Google Scholar]
  52. Rodriguez E., Gaggero C., Lavina M. 1999; The structural gene for microcin H47 encodes a peptide precursor with antibiotic activity. Antimicrob Agents Chemother 43:2176–2182
    [Google Scholar]
  53. Salomon R. A., Farias R. N. 1993; The FhuA protein is involved in microcin 25 uptake. J Bacteriol 175:7741–7742
    [Google Scholar]
  54. San Millan J. L., Kolter R., Moreno F. 1987; Evidence that colicin X is microcin B17. J Bacteriol 169:2899–2901
    [Google Scholar]
  55. Schubert S., Rakin A., Fischer D., Sorsa J., Heesemann J. 1999; Characterization of the integration site of Yersinia high-pathogenicity island in Escherichia coli . FEMS Microbiol Lett 179:409–414
    [Google Scholar]
  56. Simons R. W., Houman F., Kleckner N. 1987; Improved single and multicopy lac -based cloning vectors for protein and operon fusions. Gene 53:85–96
    [Google Scholar]
  57. Stanley P., Koronakis V., Hughes C. 1998; Acylation of Escherichia coli hemolysin: a unique protein lipidation mechanism underlying toxin function. Microbiol Mol Biol Rev 62:309–333
    [Google Scholar]
  58. Stojiljkovic I., Bäumler A. J., Hantke K. 1994; Fur regulon in Gram-negative bacteria: identification and characterization of new iron-regulated Escherichia coli genes by a Fur titration assay. J Mol Biol 236:531–545
    [Google Scholar]
  59. Tseng T. T., Gratwick K. S., Kollman J., Park D., Nies D. H., Goffeau A., Saier M. H Jr. 1999; The RND permease superfamily: an ancient, ubiquitous and diverse family that includes human disease and development proteins. J Mol Microbiol Biotechnol 1:107–125
    [Google Scholar]
  60. Welch R. A., Burland V., Plunkett G. III 16 other authors 2002; Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli . Proc Natl Acad Sci U S A 99:17020–17024
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26396-0
Loading
/content/journal/micro/10.1099/mic.0.26396-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed