The fate of extracellular proteins tagged by the SsrA system of Free

Abstract

In bacteria, SsrA, a highly conserved RNA molecule, functions in a mechanism meant to rescue stalled ribosomes. In this process, a peptide tag encoded by SsrA is cotranslationally added to truncated polypeptides, thereby targeting these molecules for proteolytic degradation, at least when they stay inside the cell. This study examined the fate of two extracellular proteins that were tagged by the SsrA system of . Gene constructs encoding human interleukin-3 (hIL-3) fused to a signal peptide and -amylase, both lacking an in-frame stop codon, were used as models to achieve ribosome stalling and activation of the SsrA system. Introduction of these gene constructs into led to tagging of the gene products by SsrA RNA. The tagged protein products bound to antibodies that were raised against the proteolysis tag encoded by SsrA [(A)GKTNSFNQNVALAA]. The apolar C-terminal SsrA-tag does not function as a specific signal for proteolytic degradation of SsrA-tagged amylase directly after -translation or during the secretion process. Also, SsrA-tagged amylase appeared to be very stable once outside the cell. In contrast, hIL-3 molecules tagged with the native, apolar SsrA-tag were considerably less stable than hIL-3 molecules that received a negatively charged control tag. Not one specific protease, but several non-specific proteases seem to play a role in the rapid degradation of SsrA-tagged hIL-3. The polarity of the C-terminus of heterologous hIL-3 protein proved to be an important determinant for protein stability when produced by . As observed previously in and , SsrA tagging also occurs frequently in normally growing Gram-positive bacilli and it appears that intracellular proteins are the predominant natural substrates of SsrA.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26388-0
2004-02-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/2/mic1500427.html?itemId=/content/journal/micro/10.1099/mic.0.26388-0&mimeType=html&fmt=ahah

References

  1. Abo T., Inada T., Ogawa K., Aiba H. 2000; SsrA-mediated tagging and proteolysis of LacI and its role in the regulation of lac operon. EMBO J 19:3762–3769 [CrossRef]
    [Google Scholar]
  2. Atkins J. F., Gesteland R. F. 1996; A case for trans translation. Nature 379:769–771 [CrossRef]
    [Google Scholar]
  3. Collier J., Binet E., Bouloc P. 2002; Competition between SsrA tagging and translational termination at weak stop codons in Escherichia coli . Mol Microbiol 45:745–754 [CrossRef]
    [Google Scholar]
  4. Fujihara A., Tomatsu H., Inagaki S., Tadaki T., Ushida C., Himeno H., Muto A. 2002; Detection of tmRNA-mediated trans -translation products in Bacillus subtilis . Genes Cells 7:343–350 [CrossRef]
    [Google Scholar]
  5. Gottesman S., Roche E., Zhou Y. N., Sauer R. T. 1998; The ClpXP and ClpAP proteases degrade proteins with carboxy-terminal peptide tails added by the SsrA-tagging system. Genes Dev 12:1338–1347 [CrossRef]
    [Google Scholar]
  6. Guérout-Fluery A.-M., Shazand K., Frandsen N., Stragier P. 1995; Antibiotic-resistance cassettes for Bacillus subtilis . Gene 167:335–336 [CrossRef]
    [Google Scholar]
  7. Harwood C. R., Cutting S. M. 1990 Molecular Biological Methods for Bacillus Chichester, UK: Wiley;
    [Google Scholar]
  8. Hayes C. S., Bose B., Sauer R. T. 2002a; Proline residues at the C terminus of nascent chains induce SsrA tagging during translation termination. J Biol Chem 277:33825–33832 [CrossRef]
    [Google Scholar]
  9. Hayes C. S., Bose B., Sauer R. T. 2002b; Stop codons preceded by rare arginine codons are efficient determinants of SsrA tagging in Escherichia coli . Proc Natl Acad Sci U S A 99:3440–3445 [CrossRef]
    [Google Scholar]
  10. Herman C., Bouloc P., Walker G. C., D'Ari R, Thévenet D. 1998; Degradation of carboxy-terminal-tagged cytoplasmic proteins by the Escherichia coli protease HflB (FtsH). Genes Dev 12:1348–1355 [CrossRef]
    [Google Scholar]
  11. Ito K., Tadaki T., Lee S., Takada K., Muto A., Himeno H. 2002; Trans -translation mediated by Bacillus subtilis tmRNA. FEBS Lett 516:245–252 [CrossRef]
    [Google Scholar]
  12. Jentsch S. 1996; When proteins receive deadly messages at birth. Science 271:955–956 [CrossRef]
    [Google Scholar]
  13. Karzai A. W., Susskind M. M., Sauer R. T. 1999; SmpB, a unique RNA-binding protein essential for the peptide-tagging activity of SsrA (tmRNA). EMBO J 18:3793–3799 [CrossRef]
    [Google Scholar]
  14. Karzai A. W., Roche E. D., Sauer R. T. 2000; The SsrA-SmpB system for protein tagging, directed degradation and ribosome rescue. Nat Struct Biol 7:449–455 [CrossRef]
    [Google Scholar]
  15. Keiler K. C., Waller P. R. H., Sauer R. T. 1996; Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA. Science 271:990–993 [CrossRef]
    [Google Scholar]
  16. Kim L., Mogk A., Schumann W. 1996; A xylose-inducible B. subtilis integration vector and its application. Gene 181:71–76 [CrossRef]
    [Google Scholar]
  17. Kunst F., Ogasawara N., Moszer I. 148 other authors 1997; The complete genome sequence of the Gram-positive bacterium Bacillus subtilis . Nature 390:249–256 [CrossRef]
    [Google Scholar]
  18. Marasco R., Varcamonti M., Ricca E., Sacco M. 1996; A new Bacillus subtilis gene with homology to Escherichia coli prc . Gene 183:149–152 [CrossRef]
    [Google Scholar]
  19. Roche E. D., Sauer R. T. 1999; SsrA-mediated peptide tagging caused by rare codons and tRNA scarcity. EMBO J 18:4579–4589 [CrossRef]
    [Google Scholar]
  20. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  21. Sunohara T., Abo T., Inada T., Aiba H. 2002; The C-terminal amino acid sequence of nascent peptide is a major determinant of SsrA tagging at all three stop codons. RNA 8:1416–1427 [CrossRef]
    [Google Scholar]
  22. Tjalsma H., Bolhuis A., Jongbloed J. D. H., Bron S., Van Dijl J. M. 2000; Signal peptide-dependent protein transport in Bacillus subtilis : a genome-based survey of the secretome. Microbiol Mol Biol Rev 64:515–547 [CrossRef]
    [Google Scholar]
  23. Tu G.-F., Reid G. E., Zhang J.-G., Moritz R. L., Simpson R. J. 1995; C-terminal extension of truncated recombinant proteins in Escherichia coli with a 10Sa RNA decapeptide. J Biol Chem 270:9322–9326 [CrossRef]
    [Google Scholar]
  24. Ushida C., Himeno H., Watanabe T., Muto A. 1994; tRNA-like structures in 10Sa RNAs of Mycoplasma capricolum and Bacillus subtilis . Nucleic Acids Res 22:3392–3396 [CrossRef]
    [Google Scholar]
  25. Vagner V., Dervyn E., Ehrlich S. D. 1998; A vector for systematic gene inactivation in Bacillus subtilis . Microbiology 144:3097–3104 [CrossRef]
    [Google Scholar]
  26. Van Dijl J. M., Smith H., Bron S., Venema G, de Jong A. 1991; Non-functional expression of Escherichia coli signal peptidase I in Bacillus subtilis . J Gen Microbiol 137:2073–2083 [CrossRef]
    [Google Scholar]
  27. Van Leen R. W., Bakhuis J. G. 7 other authors van Beckhoven R. F. W. C. 1991; Production of human interleukin-3 using industrial microorganisms. Biotechnology 9:47–52 [CrossRef]
    [Google Scholar]
  28. Wiegert T., Schumann W. 2001; SsrA-mediated tagging in Bacillus subtilis . J Bacteriol 183:3885–3889 [CrossRef]
    [Google Scholar]
  29. Williams K. P. 2000; The tmRNA website. Nucleic Acids Res 27:165–166
    [Google Scholar]
  30. Williams K. P. 2002; The tmRNA website: invasion by an intron. Nucleic Acids Res 30:179–182 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26388-0
Loading
/content/journal/micro/10.1099/mic.0.26388-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed