1887

Abstract

To assess the genetic diversity and genetic relationships of , the causative agent of hazelnut decline, a total of 102 strains, obtained from central Italy (provinces of Viterbo and Rome) and northern Greece, were studied using multilocus enzyme electrophoresis (MLEE). Their allelic variation in 10 loci was determined. All loci were polymorphic and 53 electrophoretic types (ETs) were identified from the total sample. The mean genetic diversity () was 0·65 and this value ranged from 0·37 for the least polymorphic to 0·82 for the most polymorphic locus. The dendrogram originated from MLEE data indicated two main groups of ETs, A and B. The groups do not appear to be correlated to the geographic origin of the strains, although all the ETs from northern Greece clustered into subgroup B1. pv. and pv. , included in the analysis as outgroups, clustered apart. The index of association ( ) for was 0·90. The values were always significantly different from zero for the population subsets studied and no epidemic structure was found. These results would indicate that the population structure of is clonal either in northern Greece or in central Italy. The recent outbreaks of the bacterium in new areas of hazelnut cultivation would explain the current clonal structure that is persisting over decades.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26380-0
2003-10-01
2020-04-10
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/10/mic1492891.html?itemId=/content/journal/micro/10.1099/mic.0.26380-0&mimeType=html&fmt=ahah

References

  1. Brown A. H. D., Feldman M. W., Nevo E.. 1980; Multilocus structure of natural populations of Hordeum spontaneum . Genetics96:523–536
    [Google Scholar]
  2. Caugant D. A., Mocca F. L., Frasch C. E., Froholm L. O., Zollinger W. D., Selander R. K.. 1987; Genetic structure of Neisseria meningitidis population in relation to serogroups, serotype, and outer membrane protein pattern. J Bacteriol169:2781–2792
    [Google Scholar]
  3. Cohan F. M.. 1994; Genetic exchange and evolutionary divergence in prokaryotes. Trends Ecol Evol9:175–180
    [Google Scholar]
  4. Denny T. P., Gilmour M. N., Selander R. K.. 1988; Genetic diversity and relationships of two pathovars of Pseudomonas syringae . J Gen Microbiol134:1949–1960
    [Google Scholar]
  5. Farfan M., Minana D., Fusté M. C., Lorén J. G.. 2000; Genetic relationships between clinical and environmental Vibrio cholerae isolates based on multilocus enzyme electrophoresis. Microbiology146:2613–2626
    [Google Scholar]
  6. Feizabadi M. M., Robertson I. D., Cousins D. V., Dowson D. J., Hampson D. J.. 1997; Use of multilocus enzyme electrophoresis to examine genetic relationships amongst isolates of Mycobacterium intracellulare and related species. Microbiology143:1461–1469
    [Google Scholar]
  7. Gardan L., Shafik H., Belouin S., Brosch R., Grimont F., Grimont P. A. D.. 1999; DNA relatedness among the pathovars of Pseudomonas syringae and description of Pseudomonas tremae sp.nov. and P . cannabina sp. nov. ( ex Sutic and Dowson 1959). Int J Syst Bacteriol49:469–478
    [Google Scholar]
  8. Go M. F., Kapen V., Graham D. Y., Musser J. M.. 1996; Population genetic analysis of Helicobater pylori by multilocus enzyme electrophoresis: extensive allelic diversity and recombinational population structure. J Bacteriol178:3934–3938
    [Google Scholar]
  9. Janse J. D., Rossi M. P., Angelucci L., Scortichini M., Derks J. H. J., Akkermans A. D. L., De Vrijer R., Psallidas P. G.. 1996; Reclassification of Pseudomonas syringae pv.avellanae as Pseudomonas avellanae (sp. nov.), the bacterium causing canker of hazelnut ( Corylus avellana L.). Syst Appl Microbiol19:589–595
    [Google Scholar]
  10. Johnson W. M., Tyler J. D., Rozee K. R.. 1994; Linkage analysis of geographic and clinical clusters in Pseudomonas cepacia infections by multilocus enzyme electrophoresis and ribotyping. J Clin Microbiol19:307–313
    [Google Scholar]
  11. King E. D., Raney M. K., Ward D. R.. 1954; Two simple media for the demonstration of pyocianin and fluorescin. J Lab Clin Med44:301–307
    [Google Scholar]
  12. Levin B. R., Bergstrom C. T.. 2000; Bacteria are different: observations, interpretations, speculations and opinions about the mechanisms of adaptive evolution in prokaryotes. Proc Natl Acad Sci U S A97:6981–6985
    [Google Scholar]
  13. Loreti S., Sarrocco S., Gallelli A.. 2001; Identification of hrp genes, encoding harpin protein in Pseudomonas avellanae (Psallidas) Janse et al . J Phytopathol149:219–226
    [Google Scholar]
  14. Loreti S., Gallelli A.. 2002; Rapid and specific detection of virulent Pseudomonas avellanae strains by PCR amplification. Eur J Plant Pathol108:237–244
    [Google Scholar]
  15. Maynard Smith J., Smith N. H., O'Rourke M., Spratt B. G.. 1993; How clonal are bacteria?. Proc Natl Acad Sci U S A90:4384–4388
    [Google Scholar]
  16. Maynard Smith J., Feil E. J., Smith N. H.. 2000; Population structure and evolutionary dynamics of pathogenic bacteria. BioEssays22:1115–1122
    [Google Scholar]
  17. Nei M.. 1978; Estimation of average heterozygosity and genetic distance from a small sample of individuals. Genetics89:583–590
    [Google Scholar]
  18. Psallidas P. G.. 1987; The problem of bacterial canker of hazelnut in Greece caused by Pseudomonas syringae pv . avellanae . Bulletin OEPP17:257–261
    [Google Scholar]
  19. Psallidas P. G., Panagopoulos C. G.. 1979; A bacterial canker of hazelnut in Greece caused by Pseudomonas syringae pv. avellanae . Phytopathol Z94:103–111
    [Google Scholar]
  20. Rius N., Fusté M. C., Guasp C., Lalucat J., Lorén J. G.. 2001; Clonal population structure of Pseudomonas stutzeri , a species with exceptional genetic diversity. J Bacteriol183:736–744
    [Google Scholar]
  21. Rohlf F. J.. 1993; Numerical taxonomy and multivariate analysis system, version 1.80 New York: Exeter Software;
    [Google Scholar]
  22. Rossellò R., Garcia-Valdes E., Lalucat J., Ursing J.. 1991; Genotypic and phenotypic diversity of Pseudomonas stutzeri . Syst Appl Microbiol13:150–157
    [Google Scholar]
  23. Scortichini M.. 2002; Bacterial canker and decline of European hazelnut. Plant Disease86:704–709
    [Google Scholar]
  24. Scortichini M., Marchesi U.. 2001; Sensitive and specific detection of Pseudomonas avellanae using primers based on 16S rRNA gene sequence. J Phytopathol149:527–532
    [Google Scholar]
  25. Scortichini M., Dettori M. T., Marchesi U., Palombi M. A., Rossi M. P.. 1998; Differentiation of Pseudomonas avellanae strains from Greece and Italy by rep-PCR genomic fingerprinting. J Phytopathol146:417–420
    [Google Scholar]
  26. Scortichini M., Marchesi U., Rossi M. P., Angelucci L., Dettori M. T.. 2000; Rapid identification of Pseudomonas avellanae field isolates, causing hazelnut decline in central Italy, by repetitive PCR genomic fingerprinting. J Phytopathol148:153–159
    [Google Scholar]
  27. Scortichini M., Marchesi U., Di Prospero P.. 2002a; Genetic relatedness among Pseudomonas avellanae , P. syringae pv.theae and P.s . pv. actinidiae , and their identification. Eur J Plant Pathol108:269–278
    [Google Scholar]
  28. Scortichini M., Marchesi U., Rossi M. P., Di Prospero P.. 2002b; Bacteria associated with hazelnut ( Corylus avellana L.) decline are of two groups: Pseudomonas avellanae and strains resembling P. syringae pv. syringae. Appl Environ Microbiol68:476–484
    [Google Scholar]
  29. Selander R. K., Caugant D. A., Ochman H., Musser J. M., Gilmour M. N., Whittam T. J.. 1986; Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics. Appl Environ Microbiol51:873–884
    [Google Scholar]
  30. Selander R. K., Betran P., Smith N. H.. 7 other authors 1990; Evolutionary genetic relationship of clones of Salmonella serovars that cause human typhoid and other enteric fevers. Infect Immun58:2262–2275
    [Google Scholar]
  31. Sneath P. H. A., Sokal R. R.. 1973; Numerical Taxonomy San Francisco: Freeman;
    [Google Scholar]
  32. Sokal R. R., Rohlf F. J.. 1981; Biometry New York: Freeman;
    [Google Scholar]
  33. Souza V., Nguyen T. T., Hudson R. R., Pinero D., Lenski R. E.. 1992; Hierarchical analysis of linkage disequilibrium in Rhizobium population: evidence for sex?. Proc Natl Acad Sci U S A89:8389–8393
    [Google Scholar]
  34. Vandamme P., Pot B., Gillis M., De Vos P., Kersters K., Swings J.. 1996; Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev60:407–438
    [Google Scholar]
  35. Whittam T. S.. 1992; Sex in soil. Curr Biol2:676–678
    [Google Scholar]
  36. Whittam T. J., Ochman H., Selander R. K.. 1983; Geographic component of linkage disequilibrium in natural population of Escherichia coli . Mol Biol Evol1:67–83
    [Google Scholar]
  37. Wise H. G., Shimkets L. J., McArthur J. V.. 1995; Genetic structure of a lotic population of Burkholderia ( Pseudomonas ) cepacia . Appl Environ Microbiol61:1791–1798
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26380-0
Loading
/content/journal/micro/10.1099/mic.0.26380-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error