1887

Abstract

Cholic acid (CA) transport was investigated in nine intestinal strains. Upon energization with glucose, all of the bifidobacteria accumulated CA. The driving force behind CA accumulation was found to be the transmembrane proton gradient (ΔpH, alkaline interior). The levels of accumulated CA generally coincided with the theoretical values, which were calculated by the Henderson–Hasselbalch equation using the measured internal pH values of the bifidobacteria, and a p value of 6·4 for CA. These results suggest that the mechanism of CA accumulation is based on the diffusion of a hydrophobic weak acid across the bacterial cell membrane, and its dissociation according to the ΔpH value. A mixture of short-chain fatty acids (acetate, propionate and butyrate) at the appropriate colonic concentration (117 mM in total) reduced CA accumulation in JCM 1192. These short-chain fatty acids, which are weak acids, reduced the ΔpH, thereby decreasing CA accumulation in a dose-dependent manner. The bifidobacteria did not alter or modify the CA molecule. The probiotic potential of CA accumulation is discussed in relation to human bile acid metabolism.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26376-0
2003-08-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/8/mic1492031.html?itemId=/content/journal/micro/10.1099/mic.0.26376-0&mimeType=html&fmt=ahah

References

  1. Baron, S. F. & Hylemon, P. B. ( 1997; ). Biotransformation of bile acids, cholesterol, and steroid hormones. In Gastrointestinal Microbiology, vol. 1, Gastrointestinal Ecosystems and Fermentations, pp. 470–510. Edited by R. I. Mackie & B. A. White. New York: International Thomson Publishing.
  2. Binder, H. J., Filburn, B. & Floch, M. ( 1975; ). Bile acid inhibition of intestinal anaerobic organisms. Am J Clin Nutr 28, 119–125.
    [Google Scholar]
  3. Breeuwer, P., Drocourt, J., Rombouts, F. M. & Abee, T. ( 1996; ). A novel method for continuous determination of the intracellular pH in bacteria with the internally conjugated fluorescent probe 5 (and 6-)-carboxyfluorescein succinimidyl ester. Appl Environ Microbiol 62, 178–183.
    [Google Scholar]
  4. Cummings, J. H. ( 1997; ). Short-chain fatty acids. In The Large Intestine in Nutrition and Disease, pp. 43–65. Bruxelles: Institut Danone.
  5. Cummings, J. H. & Macfarlane, G. T. ( 1997; ). Role of intestinal bacteria in nutrient metabolism. Clin Nutr 16, 3–11.
    [Google Scholar]
  6. Cummings, J. H., Macfarlane, G. T. & Englyst, H. N. ( 2001; ). Prebiotic digestion and fermentation. Am J Clin Nutr 73, 415S–420S.
    [Google Scholar]
  7. Diez-Gonzalez, F. & Russell, J. B. ( 1997; ). Effects of carbonylcyanide-m-chlorophenylhydrazone (CCCP) and acetate on Escherichia coli O157 : H7 and K-12: uncoupling versus anion accumulation. FEMS Microbiol Lett 151, 71–76.[CrossRef]
    [Google Scholar]
  8. Elkins, C. A. & Savage, D. C. ( 1998; ). Identification of genes encoding conjugated bile salt hydrolase and transport in Lactobacillus johnsonii 100-100. J Bacteriol 180, 4344–4349.
    [Google Scholar]
  9. Elkins, C. A., Moser, S. A. & Savage, D. C. ( 2001; ). Genes encoding bile salt hydrolases and conjugated bile salt transporters in Lactobacillus johnsonii 100-100 and other Lactobacillus species. Microbiology 147, 3403–3412.
    [Google Scholar]
  10. Eneroth, P. ( 1963; ). Thin-layer chromatography of bile acids. J Lipid Res 4, 11–16.
    [Google Scholar]
  11. Ewe, K. & Karbach, U. ( 1989; ). Functions of the alimentary canal. In Human Physiology, pp. 693–734. Edited by R. F. Schmidt & G. Thews. Berlin: Springer-Verlag.
  12. Kamp, F. & Hamilton, J. A. ( 1993; ). Movement of fatty acids, fatty acid analogues, and bile acids across phospholipid bilayers. Biochemistry 32, 11074–11086.[CrossRef]
    [Google Scholar]
  13. Kitahara, M., Takamine, F., Imamura, T. & Benno, Y. ( 2000; ). Assignment of Eubacterium sp. VPI 12708 and related strains with high bile acid 7α-dehydroxylating activity to Clostridium scindens and proposal of Clostridium hylemonae sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 50, 971–978.[CrossRef]
    [Google Scholar]
  14. Kurdi, P., van Veen, H. W., Tanaka, H., Mierau, I., Konings, W. N., Tannock, G. W., Tomita, F. & Yokota, A. ( 2000; ). Cholic acid is accumulated spontaneously, driven by membrane ΔpH, in many lactobacilli. J Bacteriol 182, 6525–6528.[CrossRef]
    [Google Scholar]
  15. Mallonee, D. H. & Hylemon, P. B. ( 1996; ). Sequencing and expression of a gene encoding a bile acid transporter from Eubacterium sp. strain VPI 12708. J Bacteriol 178, 7053–7058.
    [Google Scholar]
  16. Masuda, N. ( 1981; ). Deconjugation of bile salts by Bacteroides and Clostridium. Microbiol Immunol 25, 1–11.[CrossRef]
    [Google Scholar]
  17. Mitsuoka, T. ( 2002; ). Prebiotics and intestinal flora. Biosci Microflora 21, 3–12.[CrossRef]
    [Google Scholar]
  18. Ouwehand, A. C., Salminen, S. & Isolauri, E. ( 2002; ). Probiotics: an overview of beneficial effects. Antonie van Leeuwenhoek 82, 279–289.[CrossRef]
    [Google Scholar]
  19. Poolman, B., Hellingwerf, K. J. & Konings, W. N. ( 1987; ). Regulation of the glutamate–glutamine transport system by intracellular pH in Streptococcus lactis. J Bacteriol 169, 2272–2276.
    [Google Scholar]
  20. Reddy, B. S. & Watanabe, K. ( 1979; ). Effect of cholesterol metabolites and promoting effect of lithocholic acid in colon carcinogenesis in germ-free and conventional F344 rats. Cancer Res 39, 1521–1524.
    [Google Scholar]
  21. Reddy, B. S., Narasawa, T., Weisburger, J. H. & Wynder, E. L. ( 1976; ). Promoting effect of sodium deoxycholate on colon adenocarcinomas in germfree rats. J Natl Cancer Inst 56, 441–442.
    [Google Scholar]
  22. Russell, J. B. ( 1991; ). Resistance of Streptococcus bovis to acetic acid at low pH: relationship between intracellular pH and anion accumulation. Appl Environ Microbiol 57, 255–259.
    [Google Scholar]
  23. Takahashi, T. & Morotomi, M. ( 1994; ). Absence of cholic acid 7α-dehydroxylase activity in the strains of Lactobacillus and Bifidobacterium. J Dairy Sci 77, 3275–3286.[CrossRef]
    [Google Scholar]
  24. Tanaka, H., Doesburg, k., Iwasaki, T. & Mierau, I. ( 1999; ). Screening of lactic acid bacteria for bile salt hydrolase activity. J Dairy Sci 82, 2530–2535.[CrossRef]
    [Google Scholar]
  25. Tanaka, H., Hashiba, H., Kok, J. & Mierau, I. ( 2000; ). Bile salt hydrolase of Bifidobacterium longum – biochemical and genetic characterization. Appl Environ Microbiol 66, 2502–2512.[CrossRef]
    [Google Scholar]
  26. Thanassi, D. G., Cheng, L. W. & Nikaido, H. ( 1997; ). Active efflux of bile salts by Escherichia coli. J Bacteriol 179, 2512–2518.
    [Google Scholar]
  27. White, B. A., Lipsky, R. L., Fricke, R. J. & Hylemon, P. B. ( 1980; ). Bile acid induction specificity of 7α-dehydroxylase activity in an intestinal Eubacterium species. Steroids 35, 103–109.[CrossRef]
    [Google Scholar]
  28. Yokota, A., Veenstra, M., Kurdi, P., van Veen, H. W. & Konings, W. N. ( 2000; ). Cholate resistance in Lactococcus lactis is mediated by an ATP-dependent multispecific organic anion transporter. J Bacteriol 182, 5196–5201.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26376-0
Loading
/content/journal/micro/10.1099/mic.0.26376-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error