1887

Abstract

Bacteria degrading the quorum-sensing (QS) signal molecule -hexanoylhomoserine lactone were isolated from a tobacco rhizosphere. Twenty-five isolates degrading this homoserine lactone fell into six groups according to their genomic REP-PCR and PCR-RFLP profiles. Representative strains from each group were identified as members of the genera , , and . All these isolates degraded -acylhomoserine lactones other than the hexanoic acid derivative, albeit with different specificity and kinetics. One of these isolates, strain W2, was used to quench QS-regulated functions of other microbes. , W2 strongly interfered with violacein production by , and transfer of pathogenicity in . , W2 markedly reduced the pathogenicity of subsp. in potato tubers. These series of results reveal the diversity of the QS-interfering bacteria in the rhizosphere and demonstrate the validity of targeting QS signal molecules to control pathogens with natural bacterial isolates.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26375-0
2003-08-01
2019-09-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/8/mic1491981.html?itemId=/content/journal/micro/10.1099/mic.0.26375-0&mimeType=html&fmt=ahah

References

  1. Bauer, W. D. & Robinson, J. B. ( 2002; ). Disruption of bacterial quorum sensing by other organisms. Curr Opin Biotechnol 13, 234–237.[CrossRef]
    [Google Scholar]
  2. Byers, J. T., Lucas, C., Salmond, G. P. & Welch, M. ( 2002; ). Nonenzymatic turnover of an Erwinia carotovora quorum-sensing signalling molecule. J Bacteriol 184, 1163–1171.[CrossRef]
    [Google Scholar]
  3. Cha, C., Gao, P., Chen, Y. C., Shaw, P. D. & Farrand, S. K. ( 1998; ). Production of acyl-homoserine lactone quorum-sensing signals by gram-negative plant-associated bacteria. Mol Plant Microbe Interact 11, 1119–1129.[CrossRef]
    [Google Scholar]
  4. Dong, Y. H., Xu, J. L., Li, X. Z. & Zhang, L. H. ( 2000; ). AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proc Natl Acad Sci 97, 3526–3531.[CrossRef]
    [Google Scholar]
  5. Dong, Y. H., Wang, L. H., Xu, J. L., Zhang, H. B., Zhang, X. F. & Zhang, L. H. ( 2001; ). Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature 411, 813–817.[CrossRef]
    [Google Scholar]
  6. Dong, Y. H., Gusti, A. R., Zhang, Q., Xu, J. L. & Zhang, L. H. ( 2002; ). Identification of quorum-quenching N-acyl homoserine lactonases from Bacillus species. Appl Environ Microbiol 68, 1754–1759.[CrossRef]
    [Google Scholar]
  7. Eberhard, A., Burlingame, A. L., Eberhard, C., Kenyon, G. L., Nealson, K. H. & Oppenheimer, N. J. ( 1981; ). Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry 20, 2444–2449.[CrossRef]
    [Google Scholar]
  8. Elasri, M., Delorme, S., Lemanceau, P., Stewart, G., Laue, B., Glickmann, E., Oger, P. M. & Dessaux, Y. ( 2001; ). Acyl-homoserine lactone production is more common among plant-associated Pseudomonas spp. than among soilborne Pseudomonas spp. Appl Environ Microbiol 67, 1198–1209.[CrossRef]
    [Google Scholar]
  9. Erickson, D. L., Nsereko, V. L., Morgavi, D. P., Selinger, L. B., Rode, L. M. & Beauchemin, K. A. ( 2002; ). Evidence of quorum sensing in the rumen ecosystem: detection of N-acyl homoserine lactone autoinducers in ruminal contents. Can J Microbiol 48, 374–378.[CrossRef]
    [Google Scholar]
  10. Finch, R. G., Pritchard, D. L., Bycroft, B. W., Williams, P. & Stewart, G. S. A. B. ( 1998; ). Quorum sensing: a novel target for anti-infective therapy. J Antimicrob Chemother 42, 569–571.[CrossRef]
    [Google Scholar]
  11. Flagan, S., Ching, W. K. & Leadbetter, J. R. ( 2003; ). Arthrobacter strain VAI-A utilizes acyl-homoserine lactone inactivation products and stimulates quorum signal biodegradation by Variovorax paradoxus. Appl Environ Microbiol 69, 909–916.[CrossRef]
    [Google Scholar]
  12. Fray, R. G. ( 2002; ). Altering plant-microbe interaction through artificially manipulating bacterial quorum sensing. Ann Bot 89, 245–253.[CrossRef]
    [Google Scholar]
  13. Fuqua, W. C., Winans, S. C. & Greenberg, E. P. ( 1994; ). Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176, 269–275.
    [Google Scholar]
  14. Fuqua, C., Parsek, M. R. & Greenberg, E. P. ( 2001; ). Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu Rev Genet 35, 439–468.[CrossRef]
    [Google Scholar]
  15. Gram, L., de Nys, R., Maximilien, R., Givskov, M., Steinberg, P. & Kjelleberg, S. ( 1996; ). Inhibitory effects of secondary metabolites from the red alga Delisea pulchra on swarming motility of Proteus mirabilis. Appl Environ Microbiol 62, 4284–4287.
    [Google Scholar]
  16. Hauben, L., Moore, E. R., Vauterin, L., Steenackers, M., Mergaert, J., Verdonck, L. & Swings, J. ( 1998; ). Phylogenetic position of phytopathogens within the Enterobacteriaceae. Syst Appl Microbiol 21, 384–397.[CrossRef]
    [Google Scholar]
  17. Huguet, V., McCray Batzli, J., Zimpfer, J. F., Normand, P., Dawson, J. O. & Fernandez, M. P. ( 2001; ). Diversity and specificity of Frankia strains in nodules of sympatric Myrica gale, Alnus incana, and Shepherdia canadensis determined by rrs gene polymorphism. Appl Environ Microbiol 67, 2116–2122.[CrossRef]
    [Google Scholar]
  18. Hwang, I., Li, P. L., Zhang, L., Piper, K. R., Cook, D. M., Tate, M. E. & Farrand, S. K. ( 1994; ). TraI, a LuxI homologue, is responsible for production of conjugation factor, the Ti plasmid N-acylhomoserine lactone autoinducer. Proc Natl Acad Sci U S A 91, 4639–4643.[CrossRef]
    [Google Scholar]
  19. Latifi, A., Winson, M. K., Foglino, M., Bycroft, B. W., Stewart, G. S., Lazdunski, A. & Williams, P. ( 1995; ). Multiple homologues of LuxR and LuxI control expression of virulence determinants and secondary metabolites through quorum sensing in Pseudomonas aeruginosa PAO1. Mol Microbiol 17, 333–343.[CrossRef]
    [Google Scholar]
  20. Leadbetter, J. R. & Greenberg, E. P. ( 2000; ). Metabolism of acyl-homoserine lactone quorum-sensing signals by Variovorax paradoxus. J Bacteriol 18, 6921–6926.
    [Google Scholar]
  21. Lee, S. J., Park, S. Y., Lee, J. J., Yum, D. Y., Koo, B. T. & Lee, J. K. ( 2002; ). Genes encoding the N-acyl homoserine lactone-degrading enzyme are widespread in many subspecies of Bacillus thuringiensis. Appl Environ Microbiol 68, 3919–3924.[CrossRef]
    [Google Scholar]
  22. Lin, Y. H., Xu, J. L., Hu, J., Wang, L. H., Ong, S. L., Leadbetter, J. R. & Zhang, L. H. ( 2003; ). Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenching enzymes. Mol Microbiol 47, 849–860.[CrossRef]
    [Google Scholar]
  23. Lindhal, V. & Bakken, L. R. ( 1995; ). Evaluation of methods for extraction of bacteria from soil. FEMS Microbiol Ecol 16, 135–142.[CrossRef]
    [Google Scholar]
  24. Lojkowska, E., Masclaux, C., Boccara, M., Robert-Baudouy, J. & Hugouvieux-Cotte-Pattat, N. ( 1995; ). Characterization of the pelL gene encoding a novel pectate lyase of Erwinia chrysanthemi 3937. Mol Microbiol 16, 1183–1195.[CrossRef]
    [Google Scholar]
  25. McClean, K. H., Winson, M. K., Fish, L. & 9 other authors ( 1997; ). Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acyl homoserine lactones. Microbiology 143, 3703–3711.[CrossRef]
    [Google Scholar]
  26. Oger, P., Dessaux, Y., Petit, A., Gardan, L., Manceau, C., Chomel, C. & Nesme, X. ( 1998; ). Validity, sensitivity and resolution limit of the PCR-RFLP analysis of the rrs (16S rRNA gene) as a tool to identify soil-borne and plant-associated bacterial populations. Genetics Selection Evolution 30, 311–321.[CrossRef]
    [Google Scholar]
  27. Petit, A. & Tempé, J. ( 1978; ). Isolation of Agrobacterium Ti plasmid regulatory mutants. Mol Gen Genet 167, 147–155.[CrossRef]
    [Google Scholar]
  28. Pierson, L. S., III, Wood, D. W. & Pierson, E. A. ( 1998; ). Homoserine lactone-mediated gene regulation in plant-associated bacteria. Annu Rev Phytopathol 36, 207–225.[CrossRef]
    [Google Scholar]
  29. Reimmann, C., Ginet, N., Michel, L. & 9 other authors ( 2002; ). Genetically programmed autoinducer destruction reduces virulence gene expression and swarming motility in Pseudomonas aeruginosa PAO1. Microbiology 148, 923–932.
    [Google Scholar]
  30. Repic Lampret, B., Kidric, J., Kralj, B., Vitale, L., Pokorny, M. & Renko, M. ( 1999; ). Lapstatin, a new aminopeptidase inhibitor produced by Streptomyces rimosus, inhibits aminopeptidases. Arch Microbiol 171, 397–404.[CrossRef]
    [Google Scholar]
  31. Reverchon, S., Bouillant, M.-L., Salmond, G. & Nasser, W. ( 1998; ). Integration of the quorum-sensing system in the regulatory networks controlling virulence factor synthesis in Erwinia chrysanthemi. Mol Microbiol 29, 1407–1418.[CrossRef]
    [Google Scholar]
  32. Robson, N. D., Cox, A. R., McGowan, S. J., Bycroft, B. W. & Salmond, G. P. ( 1997; ). Bacterial N-acyl-homoserine-lactone-dependent signalling and its potential biotechnological applications. Trends Biotechnol 15, 458–464.[CrossRef]
    [Google Scholar]
  33. Schaefer, A. L., Val, D. L., Hanzelka, B. L., Cronan, J. E. & Greenberg, E. P. ( 1996; ). Generation of cell-to-cell signals in quorum sensing: acyl homoserine lactone synthase activity of a purified Vibrio fischeri LuxI protein. Proc Natl Acad Sci U S A 93, 9505–9509.[CrossRef]
    [Google Scholar]
  34. Shaw, P. D., Ping, G., Daly, S. L., Cha, C., Cronan, J. E., Jr, Rinehart, K. L. & Farrand, S. K. ( 1997; ). Detecting and characterizing N-acyl-homoserine lactone signal molecules by thin layer chromatography. Biochem J 94, 6036–6041.
    [Google Scholar]
  35. Teplistki, M., Robinson, J. B. & Bauer, W. D. ( 2000; ). Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviours in associated bacteria. Mol Plant-Microbe Interact 13, 637–648.[CrossRef]
    [Google Scholar]
  36. Vaudequin-Dransart, V., Petit, A., Poncet, C. & 6 other authors ( 1995; ). Novel Ti plasmids in Agrobacterium strains isolated from fig tree and chrysanthemum tumors and their opinelike molecules. Mol Plant-Microbe Interact 8, 311–321.[CrossRef]
    [Google Scholar]
  37. Versalovic, J., Koeuth, T. & Lupski, J. R. ( 1991; ). Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res 19, 6823–6831.[CrossRef]
    [Google Scholar]
  38. Winans, S. C. & Bassler, B. L. ( 2002; ). Mob psychology. J Bacteriol 184, 873–883.[CrossRef]
    [Google Scholar]
  39. Yates, E. A., Philipp, B., Buckley, C. & 8 other authors ( 2002; ). N-Acylhomoserine lactones undergo lactonolysis in a pH-, temperature-, and acyl chain length-dependent manner during growth of Yersinia pseudotuberculosis and Pseudomonas aeruginosa. Infect Immun 70, 5635–5646.[CrossRef]
    [Google Scholar]
  40. Zhang, L., Murphy, P. J., Kerr, A. & Tate, M. E. ( 1993; ). Agrobacterium conjugation and gene regulation by N-acyl-l-homoserine lactones. Nature 362, 446–450.[CrossRef]
    [Google Scholar]
  41. Zhang, H. B., Wang, L. H. & Zhang, L. H. ( 2002; ). Genetic control of quorum-sensing signal turnover in Agrobacterium tumefaciens. Proc Natl Acad Sci U S A 99, 4638–4643.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26375-0
Loading
/content/journal/micro/10.1099/mic.0.26375-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error