1887

Abstract

, the causative agent of chestnut blight, has proven to be a tractable experimental system for studying fungal pathogenesis. Moreover, the development of infectious cDNA clones of hypoviruses, capable of attenuating fungal virulence, has provided the opportunity to examine molecular aspects of fungal plant pathogenesis in the context of biological control. In order to establish a genomic base for future studies of , the authors have analysed a collection of expressed sequences. A mixed cDNA library was prepared from RNA isolated from wild-type (virus-free) and hypovirus-infected strains. Plasmid DNA was recovered from individual transformants and sequenced from the 5′ end of the insert. Contig analysis of the collected sequences revealed that they represented approximately 2200 individual ORFs. An assessment of functional diversity present in this collection was achieved by using the software utilities and the NCBI protein database. Candidate genes were identified with significant potential relevance to growth, development, pathogenesis and vegetative incompatibility. Additional investigations of a 12·9 kbp genomic region revealed microsynteny between and both sa and , two closely related fungi. These data represent the largest collection of sequence information currently available for and are now forming the basis of further studies using microarray analyses to determine global changes in transcription that occur in response to hypovirus infection.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26371-0
2003-09-01
2020-08-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/9/mic1492373.html?itemId=/content/journal/micro/10.1099/mic.0.26371-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. 1997; Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402
    [Google Scholar]
  2. Anagnostakis S. L., Day P. R.. 1979; Hypovirulence conversion in Endothia parasitica . Phytopathology69:1226–1229
    [Google Scholar]
  3. Ashburner M., Ball C. A., Blake J. A.. 17 other authors 2000; Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet25:25–29
    [Google Scholar]
  4. Balasubramanian M. K., Feoktistova A., McCollum D., Gould K. L.. 1996; Fission yeast Sop2p: a novel and evolutionarily conserved protein that interacts with Arp3p and modulates profilin function. EMBO J15:6426–6437
    [Google Scholar]
  5. Barreau C., Iskandar M., Loubradou G., Levallois V., Begueret J.. 1998; The mod-A suppressor of nonallelic heterokaryon incompatibility in Podospora anserina encodes a proline-rich polypeptide involved in female organ formation. Genetics149:915–926
    [Google Scholar]
  6. Beauvais A., Bruneau J. M., Mol P. C., Buitrago M. J., Legrand R., Latge J. P.. 2001; Glucan synthase complex of Aspergillus fumigatus . J Bacteriol183:2273–2279
    [Google Scholar]
  7. Bell-Pedersen D., Shinohara M. L., Loros J. J., Dunlap J. C.. 1996; Circadian clock-controlled genes isolated from Neurospora crassa are late night- to early morning-specific. Proc Natl Acad Sci U S A93:13096–13101
    [Google Scholar]
  8. Bennett J. W., Arnold J.. 2001; Genomics for fungi. In The Mycota VIII: Biology of the Fungal Cell pp267–297 Edited by Howard R. J., Gow N. A. R. Berlin: Springer-Verlag;
  9. Bieszke J. A., Braun E. L., Bean L. E., Kang S., Natvig D. O., Borkovich K. A.. 1999; The nop-1 gene of Neurospora crassa encodes a seven transmembrane helix retinal-binding protein homologous to archaeal rhodopsins. Proc Natl Acad Sci U S A96:8034–8039
    [Google Scholar]
  10. Chen B., Gao S., Choi G. H., Nuss D. L.. 1996; Extensive alteration of fungal gene transcript accumulation and elevation of G-protein-regulated cAMP levels by a virulence-attenuating hypovirus. Proc Natl Acad Sci U S A93:7996–8000
    [Google Scholar]
  11. Choi G. H., Nuss D. L.. 1990; Nucleotide sequence of the glyceraldehyde-3-phosphate dehydrogenase gene from Cryphonectria parasitica . Nucleic Acids Res18:5566
    [Google Scholar]
  12. Choi G. H., Marek E. T., Schardl C. L., Richey M. G., Chang S. Y., Smith D. A.. 1990; sti35 , a stress-responsive gene in Fusarium spp. J Bacteriol172:4522–4528
    [Google Scholar]
  13. Choi G. H., Larson T. G., Nuss D. L.. 1992; Molecular analysis of the laccase gene from the chestnut blight fungus and selective suppression of its expression in an isogenic hypovirulent strain. Mol Plant–Microbe Interact5:119–128
    [Google Scholar]
  14. Choi G. H., Chen B., Nuss D. L.. 1995; Virus-mediated or transgenic suppression of a G-protein alpha subunit and attenuation of fungal virulence. Proc Natl Acad Sci U S A92:305–309
    [Google Scholar]
  15. Clark A. J., Blissett K. J., Oliver R. P.. 2003; Investigating the role of polyols in Cladosporium fulvum during growth under hyper-osmotic stress and in planta. Planta216:614–619
    [Google Scholar]
  16. Cortesi P., McCulloch C. E., Song H., Lin H., Milgroom M. G.. 2001; Genetic control of horizontal virus transmission in the chestnut blight fungus, Cryphonectria parasitica . Genetics159:107–118
    [Google Scholar]
  17. Dawe A. L., Nuss D. L.. 2001; Hypoviruses and chestnut blight: exploiting viruses to understand and modulate fungal pathogenesis. Annu Rev Genet35:1–29
    [Google Scholar]
  18. Diez B., Velasco J., Marcos A. T., Rodriguez M., de la Fuente J. L., Barredo J. L.. 2000; The gene encoding gamma-actin from the cephalosporin producer Acremonium chrysogenum . Appl Microbiol Biotechnol54:786–791
    [Google Scholar]
  19. Dixon K. P., Xu J. R., Smirnoff N., Talbot N. J.. 1999; Independent signaling pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection by Magnaporthe grisea . Plant Cell11:2045–2058
    [Google Scholar]
  20. Dunlap J. C.. 1996; Genetics and molecular analysis of circadian rhythms. Annu Rev Genet30:579–601
    [Google Scholar]
  21. Espagne E., Balhadere P., Penin M. L., Barreau C., Turcq B.. 2002; HET-E and HET-D belong to a new subfamily of WD40 proteins involved in vegetative incompatibility specificity in the fungus Podospora anserina . Genetics161:71–81
    [Google Scholar]
  22. Flanary P. L., DiBello P. R., Estrada P., Dohlman H. G.. 2000; Functional analysis of Plp1 and Plp2, two homologues of phosducin in yeast. J Biol Chem275:18462–18469
    [Google Scholar]
  23. Galagan J. E., Calvo S. E., Borkovich K. A.. 74 other authors 2003; The genome sequence of the filamentous fungus Neurospora crassa . Nature422:859–868
    [Google Scholar]
  24. Glass N. L., Kaneko I.. 2003; Fatal attraction: nonself recognition and heterokaryon incompatibility in filamentous fungi. Eukaryot Cell2:1–8
    [Google Scholar]
  25. Hamer L., Pan H., Adachi K., Orbach M. J., Page A., Ramamurthy L., Woessner J. P.. 2001; Regions of microsynteny in Magnaporthe grisea and Neurospora crassa . Fungal Genet Biol33:137–143
    [Google Scholar]
  26. He X., Hayashi N., Walcott N. G., Azuma Y., Patterson T. E., Bischoff F. R., Nishimoto T., Sazer S.. 1998; The identification of cDNAs that affect the mitosis-to-interphase transition in Schizosaccharomyces pombe , including sbp1, which encodes a spi1p-GTP-binding protein. Genetics148:645–656
    [Google Scholar]
  27. Heckmann S., Schliwa M., Kube-Granderath E.. 1997; Primary structure of Neurospora crassa gamma-tubulin. Gene199:303–309
    [Google Scholar]
  28. Heintzen C., Loros J. J., Dunlap J. C.. 2001; The PAS protein VIVID defines a clock-associated feedback loop that represses light input, modulates gating, and regulates clock resetting. Cell104:453–464
    [Google Scholar]
  29. Hwang C. S., Rhie G. E., Oh J. H., Huh W. K., Yim H. S., Kang S. O.. 2002; Copper- and zinc-containing superoxide dismutase (Cu/ZnSOD) is required for the protection of Candida albicans against oxidative stresses and the expression of its full virulence. Microbiology148:3705–3713
    [Google Scholar]
  30. Jara P., Gilbert S., Delmas P., Guillemot J. C., Kaghad M., Ferrara P., Loison G.. 1996; Cloning and characterization of the eapB and eapC genes of Cryphonectria parasitica encoding two new acid proteinases, and disruption of eapC . Mol Gen Genet250:97–105
    [Google Scholar]
  31. Kamoun S., Hraber P., Sobral B., Nuss D., Govers F.. 1999; Initial assessment of gene diversity for the oomycete pathogen Phytophthora infestans based on expressed sequences. Fungal Genet Biol28:94–106
    [Google Scholar]
  32. Kasahara S., Nuss D. L.. 1997; Targeted disruption of a fungal G-protein beta subunit gene results in increased vegetative growth but reduced virulence. Mol Plant–Microbe Interact10:984–993
    [Google Scholar]
  33. Kasahara S., Wang P., Nuss D. L.. 2000; Identification of bdm-1 , a gene involved in G protein beta-subunit function and alpha-subunit accumulation. Proc Natl Acad Sci U S A97:412–417
    [Google Scholar]
  34. Keon J., Bailey A., Hargreaves J.. 2000; A group of expressed cDNA sequences from the wheat fungal leaf blotch pathogen, Mycosphaerella graminicola ( Septoria tritici ). Fungal Genet Biol29:118–133
    [Google Scholar]
  35. Kim S., Ahn I. P., Lee Y. H.. 2001; Analysis of genes expressed during rice- Magnaporthe grisea interactions. Mol Plant–Microbe Interact14:1340–1346
    [Google Scholar]
  36. Kimpel E., Osiewacz H. D.. 1999; PaGrg1, a glucose-repressible gene of Podospora anserina that is differentially expressed during lifespan. Curr Genet35:557–563
    [Google Scholar]
  37. Kitagaki H., Wu H., Shimoi H., Ito K.. 2002; Two homologous genes, DCW1 (YKL046c) and DFG5, are essential for cell growth and encode glycosylphosphatidylinositol (GPI)-anchored membrane proteins required for cell wall biogenesis in Saccharomyces cerevisiae . Mol Microbiol46:1011–1022
    [Google Scholar]
  38. Lee S., Parent C. A., Insall R., Firtel R. A.. 1999; A novel Ras-interacting protein required for chemotaxis and cyclic adenosine monophosphate signal relay in Dictyostelium . Mol Biol Cell10:2829–2845
    [Google Scholar]
  39. Loubradou G., Begueret J., Turcq B.. 1997; A mutation in an HSP90 gene affects the sexual cycle and suppresses vegetative incompatibility in the fungus Podospora anserina . Genetics147:581–588
    [Google Scholar]
  40. Loubradou G., Begueret J., Turcq B.. 1999; MOD-D, a G-alpha subunit of the fungus Podospora anserina , is involved in both regulation of development and vegetative incompatibility. Genetics152:519–528
    [Google Scholar]
  41. Mattjus P., Turcq B., Pike H. M., Molotkovsky J. G., Brown R. E.. 2003; Glycolipid intermembrane transfer is accelerated by HET-C2, a filamentous fungus gene product involved in the cell-cell incompatibility response. Biochemistry42:535–542
    [Google Scholar]
  42. Merkel H. W.. 1906; A deadly fungus on the American chestnut. N Y Zool Soc Annu Rep10:97–103
    [Google Scholar]
  43. Momany M., Hamer J. E.. 1997; The Aspergillus nidulans septin encoding gene, aspB , is essential for growth. Fungal Genet Biol21:92–100
    [Google Scholar]
  44. Nakano K., Mabuchi I.. 1995; Isolation and sequencing of two cDNA clones encoding Rho proteins from the fission yeast Schizosaccharomyces pombe . Gene155:119–122
    [Google Scholar]
  45. Parsley T. B., Chen B., Geletka L. M., Nuss D. L.. 2002; Differential modulation of cellular signaling pathways by mild and severe hypovirus strains. Eukaryot Cell1:401–413
    [Google Scholar]
  46. Parsley T. B., Segers G., Nuss D. L., Dawe A. L.. 2003; Analysis of altered G-protein subunit accumulation in Cryphonectria parasitica reveals a third G- α homologue. Curr Genet43:24–33
    [Google Scholar]
  47. Rasmussen S. W.. 1995; A 37·5 kb region of yeast chromosome X includes the SME1 , MEF2 , GSH1 and CSD3 genes, a TCP-1 -related gene, an open reading frame similar to the DAL80 gene, and a tRNA(Arg). Yeast11:873–883
    [Google Scholar]
  48. Razanamparany V., Jara P., Legoux R., Delmas P., Msayeh F., Kaghad M., Loison G.. 1992; Cloning and mutation of the gene encoding endothiapepsin from Cryphonectria parasitica . Curr Genet21:455–461
    [Google Scholar]
  49. Saupe S., Descamps C., Turcq B., Begueret J.. 1994; Inactivation of the Podospora anserina vegetative incompatibility locus het-c , whose product resembles a glycolipid transfer protein, drastically impairs ascospore production. Proc Natl Acad Sci U S A91:5927–5931
    [Google Scholar]
  50. Shapira R., Choi G. H., Nuss D. L.. 1991; Virus-like genetic organization and expression strategy for a double-stranded RNA genetic element associated with biological control of chestnut blight. EMBO J10:731–739
    [Google Scholar]
  51. Singh G., Sinha H., Ashby A. M.. 2000; Cloning and expression studies during vegetative and sexual development of Pbs1 , a septin gene homologue from Pyrenopeziza brassicae Biochim Biophys Acta; 1497;168–174
    [Google Scholar]
  52. Skinner W., Keon J., Hargreaves J.. 2001; Gene information for fungal plant pathogens from expressed sequences. Curr Opin Microbiol4:381–386
    [Google Scholar]
  53. Smith M. L., Micali O. C., Hubbard S. P., Mir-Rashed N., Jacobson D. J., Glass N. L.. 2000; Vegetative incompatibility in the het-6 region of Neurospora crassa is mediated by two linked genes. Genetics155:1095–1104
    [Google Scholar]
  54. Soanes D. M., Skinner W., Keon J., Hargreaves J., Talbot N. J.. 2002; Genomics of phytopathogenic fungi and the development of bioinformatic resources. Mol Plant–Microbe Interact15:421–427
    [Google Scholar]
  55. Takano Y., Oshiro E., Okuno T.. 2001; Microtubule dynamics during infection-related morphogenesis of Colletotrichum lagenarium . Fungal Genet Biol34:107–121
    [Google Scholar]
  56. Thomas S. W., Rasmussen S. W., Glaring M. A., Rouster J. A., Christiansen S. K., Oliver R. P.. 2001; Gene identification in the obligate fungal pathogen Blumeria graminis by expressed sequence tag analysis. Fungal Genet Biol33:195–211
    [Google Scholar]
  57. Wang P., Larson T. G., Chen C. H., Pawlyk D. M., Clark J. A., Nuss D. L.. 1998; Cloning and characterization of a general amino acid control transcriptional activator from the chestnut blight fungus Cryphonectria parasitica . Fungal Genet Biol23:81–94
    [Google Scholar]
  58. Wood V., Gwilliam R., Rajandream M. A.. other authors 2002; The genome sequence of Schizosaccharomyces pombe . Nature415:871–880
    [Google Scholar]
  59. Yang Q., Poole S. I., Borkovich K. A.. 2002; A G-protein beta subunit required for sexual and vegetative development and maintenance of normal G α protein levels in Neurospora crassa . Eukaryot Cell1:378–390
    [Google Scholar]
  60. Zhang L., Villalon D., Sun Y., Kazmierczak P., Van Alfen N. K.. 1994; Virus-associated down-regulation of the gene encoding cryparin, an abundant cell-surface protein from the chestnut blight fungus, Cryphonectria parasitica . Gene139:59–64
    [Google Scholar]
  61. Zhang N., Blackwell M.. 2001; Molecular phylogeny of dogwood anthracnose fungus ( Discula destructiva ) and the Diaporthales. Mycologia93:355–365
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26371-0
Loading
/content/journal/micro/10.1099/mic.0.26371-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error